Question

A few iron nails with a total mass of 22.4 g are heated in a water...

A few iron nails with a total mass of 22.4 g are heated in a water bath for five minutes. The water bath was boiling with a constant temperature of 101°C according to the thermometer. When the nails were carefully transferred into 182.0 g of water in a coffee cup calorimeter the temperature of the water rose from 25.0°C to 26.0°C. What is the heat capacity of the iron?

Homework Answers

Answer #1

Mass of Iron = 22.4 g

The Temperature of Irom before added in to water = 101 deg ot T2 = 101 deg

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling...
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
A piece of titanium metal with a mass of 20.8 g is heated in boiling water...
A piece of titanium metal with a mass of 20.8 g is heated in boiling water to 99.5 0C and then dropped into a coffee cup calorimeter containing 75.0 g of water at 21.7 0C.When thermal equilibum is reached, the final temperature is 14.30C.Calculate the specific heat capacity of titanium. ( Specific Heat Capacity of H2O (l) =4.184 J g-1 0C-1)
A 35.7 gram sample of iron (heat capacity 0.45 g/J°C) was heated to 99.10 °C and...
A 35.7 gram sample of iron (heat capacity 0.45 g/J°C) was heated to 99.10 °C and placed into a coffee cup calorimeter containing 42.92 grams of water initially at 15.15 °C. What will the final temperature of the system be? (Specific heat of water is 4.184 J/g°C). Please show work.
A iron cube with a mass of 25.0 grams was heated to 90 °C. Then dropped...
A iron cube with a mass of 25.0 grams was heated to 90 °C. Then dropped to a cup containing 100 grams of water at a temperature of 23.0 °C. After 10 minutes, the water and metal came to a temperature of 27 °C. Calculate the specific heat capacity of the metal?
A 48.2 g sample of a metal is heated to 95.8 degrees C and placed in...
A 48.2 g sample of a metal is heated to 95.8 degrees C and placed in a coffee-cup calorimeter containing 79.0 g of water at a temperature of 18.5 degrees C. After the metal cools, the final temperature of the metal and water is 22.8 degrees C. Calculate the specific heat capacity of the metal, assuming that no heat escapes to the surroundings or is transferred to the calorimeter.
In an experiment, 26.0 g of metal was heated to 98.0°C and then quickly transferred to...
In an experiment, 26.0 g of metal was heated to 98.0°C and then quickly transferred to 150.0 g of water in a calorimeter. The initial temperature of the water was 20.5°C, and the final temperature after the addition of the metal was 32.5°C. Assume the calorimeter behaves ideally and does not absorb or release heat. What is the value of the specific heat capacity (in J/g•°C) of the metal? _________________ J/g•°C
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of...
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of copper metal is heated to 100.4 ∘C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g⋅K . The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.3 ∘C . Part A Determine the amount of heat, in J , lost by the copper block....
A 30.5 g sample of an alloy at 91.9°C is placed into 49.4 g water at...
A 30.5 g sample of an alloy at 91.9°C is placed into 49.4 g water at 25.0°C in an insulated coffee cup. The heat capacity of the coffee cup (without the water) is 9.2 J/K. If the final temperature of the system is 31.1°C, what is the specific heat capacity of the alloy? (c of water is 4.184 J/g×K) ____J/g°C?
Dissolving 3.00 g of CaCl2(s) in 200.0 g of water in a calorimeter at 22.4 °C...
Dissolving 3.00 g of CaCl2(s) in 200.0 g of water in a calorimeter at 22.4 °C causes the temperature to rise to 25.8 °C. What is the approximate amount of heat involved in the dissolution, assuming the heat capacity of the resulting solution is 4.18 J/g °C? Is the reaction exothermic or endothermic?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT