Question

This problem examines the effects of mixing water at two different temperatures and/or two different phases,...

This problem examines the effects of mixing water at two different temperatures and/or two different phases, such as dropping ice cubes into warm water. Assume that heat of fusion is 333.55 J/g, that CP for ice is constant at 2.11 J/(g·K), and CP for liquid water is constant at 4.19 J/(g·K). You can assume CP approximately equals CV for solids and liquids. For each of the following cases, assume the mixing is adiabatic and carried out at atmospheric pressure. Find the change in entropy of the universe (total entropy change) resulting from each of these processes.

a. 100 g of liquid water at 50°C is mixed with 50 g of liquid water at 0°C.

b. 100 g of liquid water at 50°C is mixed with 50 g of ice at 0°C.

c. 50 g of liquid water at 0°C is mixed with 50 g of ice at 0°C.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
cup of iced water has 50 g of ice cubes in 100 g of water all...
cup of iced water has 50 g of ice cubes in 100 g of water all at 0 degrees celsius in a room where the air temp if 27 degrees celsius. soemtime later all the ice cubes melt into water still at 0 degrees celsius. what is the change in entropy of A) the iced water? what is the change in entropy for the room and the change in entropy for the "universe"?
Calculate the entropy change for the process of taking 1.00 kg of water from a temperature...
Calculate the entropy change for the process of taking 1.00 kg of water from a temperature of -26 C to +42 C keeping in mind that ice melts at 0 C. Assume a constant pressure of 1 bar and a temperature independent heat capacity within a given phase (Cpm = 37 J/Kmol for the solid and Cpm = 75 J/Kmol for the liquid state).
If 150 g of water at 30 deg C is mixed with 300 g of Ice...
If 150 g of water at 30 deg C is mixed with 300 g of Ice at 0 deg C, the total change in entropy will be Properties of Water: Heat of Fusion hF334 J/g Heat of VaporizationHV2264.76 J/g Specific Heat of IceCice2.080 J/g/K Specific Heat of WaterCwater4.1813 J/g/K Specific Heat of VaporCvapor2.11 J/g/K a. 18800 J/K b. 298 J/K c. 68.9 J/K d. 3.53 J/K
Imagine that you have two cups, one containing 1540 g of water and the other one...
Imagine that you have two cups, one containing 1540 g of water and the other one containing some amount of an unknown liquid. The specific heat of water is 4.19 J/g·°C, and the specific heat of the unknown liquid is 7.03 J/g·°C. You use two identical immersion heaters to heat the water and the unknown liquid simultaneously. Assume that all the heat from the heater is used to heat the content of the cups. (a) You started heating the water...
In this problem, you will model the mixing energy of a mixture in a relatively simple...
In this problem, you will model the mixing energy of a mixture in a relatively simple way, in order to relate the existence of a solubility gap to molecular behavior. Consider a mixture of A and B molecules that is ideal in every way but one: the potential energy due to the interaction of neighboring molecules depends upon whether the molecules are alike or different. Let n be the average number of nearest neighbors of any given molecule (perhaps 6...
The Henry’s law constant for O2 in water is 49,500 bar at 298 K and 63,400...
The Henry’s law constant for O2 in water is 49,500 bar at 298 K and 63,400 bar at 313 K. a) Calculate the number of grams of dissolved O2 per kg of water at 298 K if pO2 = 0.21 bar. b) Oxygen (nonpolar) and water (highly polar) are not expected to form ideal solutions. It is an excellent approximation, however, to assume activity coefficient of O2(HL) = 1. Why? c) The vast majority of substances that dissolve in water...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT