Question

15.28 Consider the following reaction: 2 N2O(g) ? 2 N2(g)+O2(g) A In the first 13.0  s of...

15.28

Consider the following reaction:
2 N2O(g) ? 2 N2(g)+O2(g)

A

In the first 13.0  s of the reaction, 1.6×10?2  mol of O2 is produced in a reaction vessel with a volume of 0.400  L . What is the average rate of the reaction over this time interval?

Express your answer using two significant figures.

B.

Predict the rate of change in the concentration of N2O over this time interval. In other words, what is ?[N2O]?t?

Express your answer using two significant figures.

Homework Answers

Answer #1

According to rate law,

for a reaction,

aA+bB --->cC+dD

rate of rxn-1/a[A]/t-1/b[B]/t1/c[C]/t1/d[D]/t

Average Rate of a reactionChange in concentration of product or reactant/change of time-1/2[N2O]/t1/2[N2]/t[O2]/t

given :t13.0s

[O2](final concentration of O2 in time t) -(initial concentration in t0)((1.6*10^-2mol)/0.4L)-00.04 mol/L

So,Average Rate of a reaction[O2]/t(0.04 mol/L)/13.0s0.0031 M/s

b)Average Rate of a reaction[O2]/t0.0031 M/s-1/2[N2O]/t

So,[N2O]/t2*0.0031 M/s0.0061 M/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following reaction: 2 N2O(g) → 2 N2(g)+O2(g) In the first 10.0 s of the...
Consider the following reaction: 2 N2O(g) → 2 N2(g)+O2(g) In the first 10.0 s of the reaction, 1.7×10−2 mol of O2 is produced in a reaction vessel with a volume of 0.430 L . What is the average rate of the reaction over this time interval?
When N2O5(g) is heated, it dissociates into N2O3(g) and O2(g) according to the following reaction: N2O5(g)...
When N2O5(g) is heated, it dissociates into N2O3(g) and O2(g) according to the following reaction: N2O5(g) ⇌ N2O3(g)+O2(g) Kc=7.75 at a given temperature. The N2O3(g) dissociates to give N2O(g) and O2(g) according the following reaction: N2O3(g)⇌N2O(g)+O2(g) Kc=4.00 at the same temperature. When 4.00 mol of N2O5(g) is heated in a 1.00-L reaction vessel to this temperature, the concentration of O2(g) at equilibrium is 4.50 mol/L. Part A Find the concentration of N2O5 in the equilibrium system. Express your answer using...
Consider the following reaction: 2NO(g)+2H2(g)→N2(g)+2H2O(g). If the rate constant for this reaction at 1000 K is...
Consider the following reaction: 2NO(g)+2H2(g)→N2(g)+2H2O(g). If the rate constant for this reaction at 1000 K is 6.0×104M−2s−1, what is the reaction rate when [NO]= 2.90×10−2M and [H2]= 1.80×10−2M? Express your answer using two significant figures. rate =   M/s   SubmitMy AnswersGive Up Part C What is the reaction rate at 1000 K when the concentration of NO is increased to 0.14 M, while the concentration of H2 is 1.80×10−2M? Express your answer using two significant figures.
PS8.4. At 25 °C, 0.540 mol of O2 and 0.400 mol of N2O were placed in...
PS8.4. At 25 °C, 0.540 mol of O2 and 0.400 mol of N2O were placed in a 1.00 liter vessel and allowed to react according to the equation 2N2O(g) + 3O2(g) 4NO2(g) When the system reached equilibrium, the concentration of NO2 was found to be 0.02748 M. a) What are the equilibrium concentrations of N2O and O2? b) What is the value of KC for this reaction at 25 °C
1. Consider the reaction 2N2O(g) -> 2N2(g) + O2(g) A. (2) Express the reaction in terms...
1. Consider the reaction 2N2O(g) -> 2N2(g) + O2(g) A. (2) Express the reaction in terms of the change in the concentration of each of the reactants and products. B. (2) In the first 15 seconds of the reaction, 0.015 mol of O2 is produced. What is the average rate of the reaction during this time interval?
Consider the reaction N2 (g) + O2 (g) ? 2 NO (g) ?H = +43 kcal/mol...
Consider the reaction N2 (g) + O2 (g) ? 2 NO (g) ?H = +43 kcal/mol Which of the following statements is true? a) Increasing the temperature will favor the forward reaction, and the concentration of NO (g) will be higher at equilibrium. b) Increasing the concentration of NO (g) will favor the forward reaction, and the concentrations of both N2 and O2 will be lower at equilibrium. c) Adding a catalyst will favor the forward reaction, and the concentration...
When N2O5(g) is heated it dissociates into N2O3(g) and O2(g) according to the reaction: N2O5(g)⇌N2O3(g)+O2(g) Kc=7.75...
When N2O5(g) is heated it dissociates into N2O3(g) and O2(g) according to the reaction: N2O5(g)⇌N2O3(g)+O2(g) Kc=7.75 at a given temperature The N2O3(g) dissociates to give N2O(g) and O2(g) according the reaction: N2O3(g)⇌N2O(g)+O2(g) Kc=4.00 at the same temperature When 4.00 mol of N2O5(g) is heated in a 1.00-Lreaction vessel to this temperature, the concentration of O2(g) at equilibrium is 4.50 mol/L. Part A: Find the concentration of N2O5 in the equilibrium system. Part B: Find the concentration of N2O in the...
1) Express your answer as a molecular formula. a) Use the data below to calculate the...
1) Express your answer as a molecular formula. a) Use the data below to calculate the heat of hydration of lithium chloride. b) Calculate the heat of hydration of sodium chloride. Compound Lattice Energy (kJ/mol) ΔHsoln(kJ/mol) LiCl -834 -37.0 NaCl -769 +3.88 2)A certain reaction with an activation energy of 115 kJ/mol was run at 485 K and again at 505 K . What is the ratio of f at the higher temperature to f at the lower temperature? Express...
Consider the decomposition of nitrous oxide, laughing gas, 2 N2O (g) = 2 N2(g) + O2(g)...
Consider the decomposition of nitrous oxide, laughing gas, 2 N2O (g) = 2 N2(g) + O2(g) At 25⁰C, Kc is 7.3 x 1034 (a) Based on the information given, what can you say about the rate of decomposition of the reaction? (b) Based on the information given, does nitrous oxide have a tendency to decompose into nitrogen gas and oxygen? (c) What is the Kp for the reaction at 25⁰C?
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C, the rate...
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C, the rate constant of the reaction is 1.94 × 10-4 min-1. If the initial pressure of N2O is 4.70 atm at 730°C, calculate the total gas pressure after one half-life. Assume that the volume remains constant.