Question

Chemical Equilibrium and Chemical Kinetics Part A For a certain reaction, Kc = 8.85×1010 and kf=...

Chemical Equilibrium and Chemical Kinetics

Part A

For a certain reaction, Kc = 8.85×1010 and kf= 7.52×10−2 M−2⋅s−1 . Calculate the value of the reverse rate constant, kr, given that the reverse reaction is of the same molecularity as the forward reaction. Express your answer with the appropriate units. Include explicit multiplication within units, for example to enter M−2⋅s−1 include ⋅ (multiplication dot) between each measurement.

Part B

For a different reaction, Kc = 1.70×1010, kf=6.63×105s−1, and kr= 3.91×10−5 s−1 . Adding a catalyst increases the forward rate constant to 2.06×108 s−1 . What is the new value of the reverse reaction constant, kr, after adding catalyst?

Express your answer with the appropriate units. Include explicit multiplication within units, for example to enter M−2⋅s−1 include ⋅ (multiplication dot) between each measurement.

Part C

Yet another reaction has an equilibrium constant Kc=4.32×105 at 25 ∘C. It is an exothermic reaction, giving off quite a bit of heat while the reaction proceeds. If the temperature is raised to200 ∘C , what will happen to the equilibrium constant?

The equilibrium constant will

Yet another reaction has an equilibrium constant  at 25 . It is an exothermic reaction, giving off quite a bit of heat while the reaction proceeds. If the temperature is raised to 200  , what will happen to the equilibrium constant?

A. increase.
B. decrease.
C. not change.

Homework Answers

Answer #1

A) we knwo that

Kc = Kf / Kr

so

8.85 x 10^10 = 7.52 x 10-2 / Kr

Kr = 8.5 x 10-13

so

kr value is 8.5 x 10-13 M-2 s-1

B)

while adding catalyst KC value remains same

so

1.70 x 10^10 = 2.06 x 10^8 / Kr

Kr = 0.0153

so

Kr value is 0.0153 M-2 s-1


C)

we know that

ln ( k2 / k1) = ( Ea /R) ln ( 1/ T1 - 1/T2)

now

T2 > T1

1 /T1 > 1 / T2

1 / T1 - 1/T2 > 0

also

for exothermic reaction Ea < 0

so

ln ( k2 / k1) < 0

so

k2 < k1

so

the equilibrium constant decreases

answer is

B) decrease

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
To understand the relationship between the equilibrium constant and rate constants. For a general chemical equation...
To understand the relationship between the equilibrium constant and rate constants. For a general chemical equation A+B⇌C+D the equilibrium constant can be expressed as a ratio of the concentrations: Kc=[C][D][A][B] If this is an elementary chemical reaction, then there is a single forward rate and a single reverse rate for this reaction, which can be written as follows: forward ratereverse rate==kf[A][B]kr[C][D] where kf and kr are the forward and reverse rate constants, respectively. When equilibrium is reached, the forward and...
a. For a certain reaction, Kc= 1.53×107 and kf= 22.1 M?2?s?1 . Calculate the b. For...
a. For a certain reaction, Kc= 1.53×107 and kf= 22.1 M?2?s?1 . Calculate the b. For a different reaction, Kc=6.70×103, kf=4.58×103s?1, and kr= 0.684 s?1 . Adding a catalyst increases the forward rate constant to 1.04×106 s?1 . What is the new value of the reverse reaction constant, kr, after adding catalyst? Express your answer numerically in inverse seconds. c. Yet another reaction has an equilibrium constant Kc=4.32×105 at 25 ?C. It is an exothermic reaction, giving off quite a...
1. For a certain reaction, Kc = 4.70×10−2 and kf= 95.6 M−2⋅s−1 . Calculate the value...
1. For a certain reaction, Kc = 4.70×10−2 and kf= 95.6 M−2⋅s−1 . Calculate the value of the reverse rate constant, kr, given that the reverse reaction is of the same molecularity as the forward reaction. Express your answer with the appropriate units. Include explicit multiplication within units, for example, to enter M−2⋅s−1 include ⋅ (multiplication dot) between each measurement 2. For a different reaction, Kc = 1.51×105, kf=8.12×103s−1 , and kr= 5.39×10−2 s−1 . Adding a catalyst increases the...
For a general chemical equation A+B⇌C+D the equilibrium constant can be expressed as a ratio of...
For a general chemical equation A+B⇌C+D the equilibrium constant can be expressed as a ratio of the concentrations: Kc=[C][D]/[A][B] If this is an elementary chemical reaction, then there is a single forward rate and a single reverse rate for this reaction, which can be written as follows: forward rate=kf[A][B] reverse rate=kr[C][D] where kf and kr are the forward and reverse rate constants, respectively. When equilibrium is reached, the forward and reverse rates are equal: kf[A][B]=kr[C][D] Thus, the rate constants are...
For a different reaction, Kc = 1.92×103, kf=6.92×104s−1, and kr= 36.1 s−1 . Adding a catalyst...
For a different reaction, Kc = 1.92×103, kf=6.92×104s−1, and kr= 36.1 s−1 . Adding a catalyst increases the forward rate constant to 1.09×107 s−1 . What is the new value of the reverse reaction constant, kr, after adding catalyst?
For a different reaction, Kc = 7.22×106, kf=4.13×105s−1, and kr= 5.72×10−2 s−1 . Adding a catalyst...
For a different reaction, Kc = 7.22×106, kf=4.13×105s−1, and kr= 5.72×10−2 s−1 . Adding a catalyst increases the forward rate constant to 7.35×107 s−1 . What is the new value of the reverse reaction constant, kr, after adding catalyst?
For a certain reaction, Kc = 3.33×10−2 and k f = 1.30×10−2 M−2⋅s−1 M − 2...
For a certain reaction, Kc = 3.33×10−2 and k f = 1.30×10−2 M−2⋅s−1 M − 2 ⋅ s − 1 . Calculate the value of the reverse rate constant, kr , given that the reverse reaction is of the same molecularity as the forward reaction. For a different reaction, Kc = 2.66×104, kf=9.40×105s−1kf=9.40×105s−1 , and kr= 35.3 s−1s−1 . Adding a catalyst increases the forward rate constant to 2.25×108 s−1s−1 . What is the new value of the reverse reaction...
Nitric oxide emitted from the engines of supersonic aircraft can contribute to the destruction of stratospheric...
Nitric oxide emitted from the engines of supersonic aircraft can contribute to the destruction of stratospheric ozone: This reaction is highly exothermic (ΔE=−201kJ), and its equilibrium constant Kc is 3.4×1034 at 300 K. Which rate constant is larger, kf or kr? Which rate constant is larger,  or ? kf kr The value of kf at 300 K is 8.2×106 M−1s−1 . What is the value of kr at the same temperature? Express your answer to two significant figures and include the...
Nitric oxide emitted from the engines of supersonic aircraft can contribute to the destruction of stratospheric...
Nitric oxide emitted from the engines of supersonic aircraft can contribute to the destruction of stratospheric ozone: This reaction is highly exothermic (ΔE=−201kJ), and its equilibrium constant Kc is 3.4×1034 at 300 K. Part A Which rate constant is larger, kf or kr? kf kr Part B The value of kf at 300 K is 8.2×106 M−1s−1 . What is the value of kr at the same temperature? Express your answer to two significant figures and include the appropriate units....
Nitrosyl bromide, NOBr, is formed in the reaction of nitric oxide, NO, with bromine, Br2: 2NO(g)+Br2(g)⇌2NOBr(g)...
Nitrosyl bromide, NOBr, is formed in the reaction of nitric oxide, NO, with bromine, Br2: 2NO(g)+Br2(g)⇌2NOBr(g) The reaction rapidly establishes equilibrium when the reactants are mixed. Part A At a certain temperature the initial concentration of NO was 0.400 M and that of Br2 was 0.255 M . At equilibrium the concentration of NOBr was found to be 0.250 M. What is the value of Kc at this temperature? Kc = 21.4 PART B At this temperature the rate constant...