Question

The first-order reaction A→products has t1/2= 170 s . a)What percent of a sample of A...

The first-order reaction A→products has t1/2= 170 s .

a)What percent of a sample of A remains unreacted 850 s after a reaction has been started? Express your answer using two significant figures.

b)What is the rate of reaction when [A]= 0.50 M ? Express your answer using two significant figures

Homework Answers

Answer #1

a) After t½ concentration has dropped to one half of it initial value.
For first order reactions, half life is independent from concentration level. Therefore: after an additional period of t½ concentration has dropped to one half of one half, i.e. one quarter of the initial value.

850s represents quintuple half life. So the concentration has dropped to:
[A]/[A]₀ = (1/2)^5 = 1/32 = 3.215%

More formally you can deduce it from integrated rate law
ln[A] = ln[A]₀ - k∙t
<=>
ln( [A]/[A]₀ ) = - k∙t
<=>
[A]/[A]₀ = e^(- k∙t)
First order rate constant is related to half life as:
k = ln(2)/t½
Hence:
[A]/[A]₀ = e^(- ln(2)∙t/t½) = 2^(-t/t½) = (1/2)^(t/t½)

b)

k = ln(2)/t½
= ln(2)/170s
= 4.07×10⁻³s⁻¹

rate = k∙[A]
= 4.07×10⁻³s⁻¹ x 0.50 M
= 2.035×10⁻³Ms⁻¹

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A certain first-order reaction has a rate constant of 2.30×10−2 s−1 at 25 ∘C . What...
A certain first-order reaction has a rate constant of 2.30×10−2 s−1 at 25 ∘C . What is the value of k at 63 ∘C if Ea = 74.0 kJ/mol ? Express your answer using two significant figures. Part B Another first-order reaction also has a rate constant of 2.30×10−2 s−1 at 25 ∘C . What is the value of k at 63 ∘C if Ea = 128 kJ/mol ? Express your answer using two significant figures.
Part A A certain first-order reaction has a rate constant of 3.00×10−2 s−1 at 25 ∘C...
Part A A certain first-order reaction has a rate constant of 3.00×10−2 s−1 at 25 ∘C . What is the value of k at 69 ∘C if Ea = 77.0 kJ/mol ? Express your answer using two significant figures. Part B Another first-order reaction also has a rate constant of 3.00×10−2 s−1 at 25 ∘C . What is the value of k at 69 ∘C if Ea = 115 kJ/mol ? Express your answer using two significant figures.
Part A A certain first-order reaction has a rate constant of 2.40×10−2 s−1 at 21 ∘C....
Part A A certain first-order reaction has a rate constant of 2.40×10−2 s−1 at 21 ∘C. What is the value of k at 61 ∘C if Ea = 90.0 kJ/mol ? Express your answer using two significant figures. k = s−1 SubmitMy AnswersGive Up Part B A certain first-order reaction has a rate constant of 2.40×10−2 s−1 at 21 ∘C. What is the value of k at 61 ∘C if Ea = 104 kJ/mol ? Express your answer using two...
Half-life equation for first-order reactions: t1/2=0.693k   where t1/2 is the half-life in seconds (s), and kis...
Half-life equation for first-order reactions: t1/2=0.693k   where t1/2 is the half-life in seconds (s), and kis the rate constant in inverse seconds (s−1). a) What is the half-life of a first-order reaction with a rate constant of 8.10×10−4  s^−1? Express your answer with the appropriate units. b) What is the rate constant of a first-order reaction that takes 151 seconds for the reactant concentration to drop to half of its initial value? Express your answer with the appropriate units. c) A...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. Answer: 6.42 min Part B A certain second-order reaction (B→products) has a rate constant of 1.35×10−3M−1⋅s−1 at 27 ∘Cand an initial half-life of 236 s . What is the concentration of the reactant B after...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products) has a rate constant of 4.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A],...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products ) has a rate constant of 5.10×10−3 s−1 at 45 ∘C . How many minutes does it take for the concentration of the...
15.28 Consider the following reaction: 2 N2O(g) ? 2 N2(g)+O2(g) A In the first 13.0  s of...
15.28 Consider the following reaction: 2 N2O(g) ? 2 N2(g)+O2(g) A In the first 13.0  s of the reaction, 1.6×10?2  mol of O2 is produced in a reaction vessel with a volume of 0.400  L . What is the average rate of the reaction over this time interval? Express your answer using two significant figures. B. Predict the rate of change in the concentration of N2O over this time interval. In other words, what is ?[N2O]?t? Express your answer using two significant figures.
The decomposition of SO2Cl2 is first order in SO2Cl2 and has a rate constant of 1.46×10−4...
The decomposition of SO2Cl2 is first order in SO2Cl2 and has a rate constant of 1.46×10−4 s−1 at a certain temperature. 1) What is the half-life for this reaction? 2) How long will it take for the concentration of SO2Cl2 to decrease to 25% of its initial concentration? Express your answer using two significant figures. 3) If the initial concentration of SO2Cl2 is 1.00 M, how long will it take for the concentration to decrease to 0.80 M ? 4)...
The decomposition of XY is second order in XY and has a rate constant of 7.08×10−3...
The decomposition of XY is second order in XY and has a rate constant of 7.08×10−3 M−1⋅s−1 at a certain temperature. Part E If the initial concentration of XY is 0.050 M, what is the concentration of XY after 55.0 s ? Express your answer using two significant figures. Part F If the initial concentration of XY is 0.050 M, what is the concentration of XY after 550 s ? Express your answer using two significant figures.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT