Question

A set of experimental results were consistent with a pseudo-first order reaction where [D]>>>[C] so [D]...

A set of experimental results were consistent with a pseudo-first order reaction where [D]>>>[C] so [D] remains essentially unchanged. The rate law was of the form, R=k[C][D] with a specific rate constant k=12.4s-1 and a concentration of 0.0625M of [D]. If the initial concentration of [C]0 was 0.005M, sketch the graph that would have shown the best straight line, with appropriately labeled axes and correct units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. TheratelawforthereactionA+B→Productswasfoundtoberate=k[A][B]2. a. What is the reaction order with respect to A? b. What is the...
2. TheratelawforthereactionA+B→Productswasfoundtoberate=k[A][B]2. a. What is the reaction order with respect to A? b. What is the reaction order with respect to B? c. What is the overall order of the reaction? d. If the concentration of A is doubled while B is left unchanged, what happens to the rate of the reaction? e. If the concentration of B is doubled while A remains unchanged, what happens to the rate of the reaction? f. What does k represent in the rate...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k ------------ Part A The reactant concentration in a zero-order reaction was 5.00×10−2M after 110 s and 4.00×10−2M after 375 s . What is the rate constant for this reaction? ---------- Part B...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 8.00×10−2M after 200 s and 2.50×10−2Mafter 390 s . What is the rate constant for this reaction? Express your answer with the...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 7.00×10−2M after 135 s and 2.50×10−2M after 315 s . What is the rate constant for this reaction? Express your answer with...
H2O2 decomposes at 20˚C in a first order reaction where k = 1.06 x 10-3min-1. If...
H2O2 decomposes at 20˚C in a first order reaction where k = 1.06 x 10-3min-1. If the initial concentration of H2O2 is 0.020 M, what is [H2O2] after 3.5 days? a. 9.6x10-5 M b. 5.1x10-5 M c. 4.4x10-5 M d. 1.7x10-5 M For the following reaction, calculate the average reaction rate over the last 2 minutes using the table of data below. H2(g)   +   2ICl(g)      I2(g)   +   2HCl(g) Time (min)     [ICl] (M) --------------     -----------         0             2.000         2            ...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 5.00×10−2M after 200 s and 2.50×10−2M after 310 s . What is the rate constant for this reaction? Express your answer with...
At elevated temperatures, in the absense of a catalyst, nitrous oxide decomposes by a first order...
At elevated temperatures, in the absense of a catalyst, nitrous oxide decomposes by a first order proces according the the equation: 2N2O (g) --> 2N2 (g) + O2 (g). From an experiment at 430 degrees Celsius, k is found to be 3.8 x 10-5 s-1; at 700 degrees Celsius, k is found to be 1.0 s-1. a. Using the two-point version of the linearized Arrhenius equation, please find the activation energy (kJ/mol) for the decomposition of N2O (g). b. Given...
Item 4 The integrated rate laws for zero-, first-, and second-order reaction may be arranged such...
Item 4 The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]t=−kt+[A]0 [A]t vs. t −k 1 ln[A]t=−kt+ln[A]0 ln[A]t vs. t −k 2 1[A]t= kt+1[A]0 1[A]t vs. t k Part A The reactant concentration in a zero-order reaction was 6.00×10−2 mol L−1 after 140 s and 3.50×10−2 mol L−1 after 400 s . What is the rate constant for...
THIS IS THE GENERAL EQUILIBRIUM PROBLEM THAT I PROMISED. YOU FIRST SOLVE FOR THE INITIAL EQUILIBRIUM...
THIS IS THE GENERAL EQUILIBRIUM PROBLEM THAT I PROMISED. YOU FIRST SOLVE FOR THE INITIAL EQUILIBRIUM AS POINT A. WE CONSIDER TWO DIFFERENT AND SEPARATE SHOCKS (I CALL THEM SCENARIOS). THE FIRST SHOCK IS TO THE IS CURVE, THE SECOND SHOCK IS A ‘LM’ SHOCK. AGAIN, WE CONSIDER THESE SHOCKS SEPARATELY SO THAT AFTER YOU COMPLETE SCENARIO 1 (THE IS SHOCK), WE GO BACK TO THE ORIGINAL CONDITIONS AND CONSIDER THE SECOND SCENARIO WHICH IS THE ‘LM’ SHOCK. Consider the...