Question

Assume you use calorimetry to calculate the specific heat capacity of a 125.24 g piece of...

Assume you use calorimetry to calculate the specific heat capacity of a 125.24 g piece of unknown metal. You intially heat the metal to 100.0 °C in boiling water. You then drop the chunk of metal into a calorimeter containing 45.22 g of water at 21.6 °C. After closing and stiring the calorimeter thoroughly, the metal and water both come to equilibrium at a temperature of 28.3 °C.

1. What is the temperature change of the water?

6.7 °C
21.6 °C
100.0 °C

2. What is the temperature change of the metal?

-71.7 °C
-28.3 °C
125.2 °C

3. How much heat was gained by the water? (calculate the qwater)

1268 J

418.4 J

28.0 J

4. Knowing the above, what must qmetal?

-125240 J
-28.0 J
-1268 J

5. Then what must the the Specific Heat of the metal be?

0.1412 J/g°C

25.00 J/g°C

0.4184 J/g°C

Homework Answers

Answer #1

The amount of heat lost or gained, q by a substance is given by

q = m × C × ∆T

where m = mass of substance in grams

C = heat capacity of the substance per g

∆T = temperature change

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following...
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following data was recorded: Quantity Mass of the metal block 0.50 kg Mass of empty calorimeter + Stirrer 0.06 kg Mass of calorimeter + stirrer + water 0.20 kg Mass of water 0.14 kg Initial Temperature of metal block 55.5 ⁰C Initial Temperature of water and calorimeter 22 ⁰C Final Temperature of block- water system 27.4 ⁰C Take the specific heat capacity of water to...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling...
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
1. The specific heat of iron metal is 0.450 J/g⋅K. How many J of heat are...
1. The specific heat of iron metal is 0.450 J/g⋅K. How many J of heat are necessary to raise the temperature of a 1.05 −kg block of iron from 28.0 ∘Cto 85.0 ∘C? 2. A 1.80-g sample of phenol (C6H5OH) was burned in a bomb calorimeter whose total heat capacity is 11.66 kJ/∘C. The temperature of the calorimeter plus contents increased from 21.36∘Cto 26.37∘C. A. Write a balanced chemical equation for the bomb calorimeter reaction. B. What is the heat...
A student obtains the following data in a calorimetry experiment designed to measure the specific heat...
A student obtains the following data in a calorimetry experiment designed to measure the specific heat of aluminum. Initial temperature of water and calorimeter 70.4°C Mass of water 0.403 kg Mass of calorimeter 0.04 kg Specific heat of calorimeter 0.60 kJ/kg·°C Initial temperature of aluminum 27.1°C Mass of aluminum 0.196 kg Final temperature of mixture 66.4°C (a) Use these data to determine the specific heat of aluminum. J/kg · °C (b) Is your result within 15% of 900 J/kg ·...
In all calorimetry problems: assume there are no heat losses or outside heat sources. Use specific...
In all calorimetry problems: assume there are no heat losses or outside heat sources. Use specific heats and heat of fusion, heat of vaporization, boiling point, etc. Joe (mass 97.2 kg) is sitting in a small, round, outdoor swimming pool of radius 3.26 m.  Before he got into the tub, the water was 86.3 cm deep,and the water was at Joe's body temperature, 37o C (so the temperature of the water did not change when got into the tub).  Suppose the temperature...
1. A 78.0 g piece of metal at 89.0°C is placed in 125 g of water...
1. A 78.0 g piece of metal at 89.0°C is placed in 125 g of water at 21.0°C contained in a calorimeter. The metal and water come to the same temperature at 27.0°C. - How much heat (in J) did the metal give up to the water? (Assume the specific heat of water is 4.18 J/g·°C across the temperature range.) - What is the specific heat (in J/g·°C) of the metal? 2. A 0.529 g sample of KCl is added...
Calculate the specific heat of a metal from the following experimental data. 75.0 ml cold water...
Calculate the specific heat of a metal from the following experimental data. 75.0 ml cold water is taken in a calorimeter. The initial temp of the water in the calorimeter is 21.2 degrees C. To the calorimeter containing cold water 29.458 g metal at 98.9 degrees C is added. The final temperature of the contents of the calorimeter is measured to be 29.5 degreesC. (Given: density of water= 1.00 g/ml, specific heat of water= 4.184 J. G. -1 degrees C...
Calorimetry Problem: Show your work neatly and methodically. Include the sign associated with ΔH. 1. When...
Calorimetry Problem: Show your work neatly and methodically. Include the sign associated with ΔH. 1. When a 6.55 gram sample of solid sodium hydroxide dissolves in 115.00 grams of water in a coffee-cup calorimeter, the temperature rises from 21.6°C to 38.7°C. Calculate ΔH, in kJ/mole NaOH, for the solution process. NaOH(s)  Na1+(aq) + OH1- (aq) The specific heat of the solution is 4.18 J/g °C. 3. 2, A 2.600 gram sample of phenol, C6H5OH, was burned in a bomb...
Answer the following questions: a) A calorimeter, specific heat capacity 500.0 J/kgC, mass 200.0 g, contains...
Answer the following questions: a) A calorimeter, specific heat capacity 500.0 J/kgC, mass 200.0 g, contains 300.0 g of water at 40.0 C. If 50.0 g of ice at 0.00 C is dropped into the water and stirred, the temperature of the mixture when the ice has melted is 23.8 C. Calculate the heat of fusion of ice. b) What is the final temperature attained when 900.0 g of ice at 0.00 C is dropped into 3400.0 g of water...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT