Question

suppose that instead of collecting and recovering copper oxide in the experiment you had performed an...

suppose that instead of collecting and recovering copper oxide in the experiment you had performed an additional copper reaction as follows CuO(s)+2HBr(aq)=CuBr2(aq)+H2O(l) What is the theoretical mass grams of copper (ll) bromide that you could form if you started with a mass of .33 grams of copper sphere?

Homework Answers

Answer #1

Reaction for the formation of CuO from Cu is

2Cu(s) + O2(g) ----> 2 CuO(s)

Mass of Cu = 0.33 g, Atomic mass of Cu = 63.546 g/mol

Number of moles of Cu = 0.33 g/ 63.546 g/mol = 0.0052 mol

From reaction, number of moles of Cu reacted = number of moles of CuO formed so number of moles of CuO would formed = 0.0052 mol

From given reaction in question,

Number of moles of CuO reacted = number of moles of CuBr2 formed so number of moles of CuBr2 formed = 0.0052 mol

Molar mass of CuBr2 = 223.37 g/mol

Theoretical mass of CuBr2 = 0.0052 mol * 223.37 g/mol = 1.16 g

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A student started with 1.433 grams of copper (II) oxide and produced 3.500 g of copper...
A student started with 1.433 grams of copper (II) oxide and produced 3.500 g of copper (II) sulfate. What is the percent yield? The product is a hydrate. Use appropriate significant figures. Do not put a percent sign in the answer box. Useful information: chemical equation: CuO(s) + H2SO4 (aq) ---> CuSO4 (aq) +H2O(l) Formula weight of hydrated copper (II) sulfate = 249.6 g/mol
A student started with 1.636 grams of copper (II) oxide and produced 3.500 g of copper...
A student started with 1.636 grams of copper (II) oxide and produced 3.500 g of copper (II) sulfate. What is the percent yield? The product is a hydrate. Use appropriate significant figures. Do not put a percent sign in the answer box. Useful information: chemical equation: CuO(s) + H2SO4 (aq) ---> CuSO4 (aq) +H2O(l) Formula weight of hydrated copper (II) sulfate = 249.6 g/mol
A student started with 1.622 grams of copper (II) oxide and produced 3.500 g of copper...
A student started with 1.622 grams of copper (II) oxide and produced 3.500 g of copper (II) sulfate. What is the percent yield? The product is a hydrate. Use appropriate significant figures. Do not put a percent sign in the answer box. Useful information: chemical equation: CuO(s) + H2SO4 (aq) ---> CuSO4 (aq) +H2O(l) Formula weight of hydrated copper (II) sulfate = 249.6 g/mol
Suppose that, for reaction CuO (s) + H2SO4 (aq) → CuSO4 (aq) + H2O (l) you...
Suppose that, for reaction CuO (s) + H2SO4 (aq) → CuSO4 (aq) + H2O (l) you could not find the bottle of 7 M H2SO4 so you added 5.00 mL of the 1.00 M H2SO4 instead. How would this impact your final yield of Copper. (Show with calculations how this would impact the limiting reagent.
Reaction 1. a) For each mole of Cu dissolved in the nitric acid solution (HNO3), how...
Reaction 1. a) For each mole of Cu dissolved in the nitric acid solution (HNO3), how many moles of [Cu(H2O)6]2+ are formed? b) Given your data above, how many moles of [Cu(H2O)6]2+ were formed in your reaction? Reaction I: Cu (s) + 4 H3O+(aq) + 2 NO3-(aq) --> [Cu(H2O)6]2+(aq) + 2 NO2(g) The first reaction in the series is an oxidation – reduction reaction where copper metal“dissolves” in nitric acid (HNO3). Anoxidation – reduction reactionoccurs when one atomgains an electron...
Procedure Reaction 1: Dissolving the Copper 1. Obtain a clean, dry, glass centrifuge tube. 2. Place...
Procedure Reaction 1: Dissolving the Copper 1. Obtain a clean, dry, glass centrifuge tube. 2. Place a piece of copper wire in a weighing paper, determine the mass of the wire and place it in the centrifuge tube. The copper wire should weigh less than 0.0200 grams. 3. In a fume hood, add seven drops of concentrated nitric acid to the reaction tube so that the copper metal dissolves completely. Describe your observations in the lab report. (Caution, Concentrated nitric...
a)How is it possible to determine if CaCO3 is Cl- free after synthesis? b)How can the...
a)How is it possible to determine if CaCO3 is Cl- free after synthesis? b)How can the Cl- ions be remove from CaCO3 after synthesis? I should answer the questions from the following experiment but if you know the answer and you are sure, yo do not need to read experiment. Please answer correctly because i hav no chance to make wrong :(((( Physical and Chemical Properties of Pure Substances Objective The aim of today’s experiment is to learn handling chemicals...
What are standard conditions of ΔH° for the data you will use? Temperature 0 K 100...
What are standard conditions of ΔH° for the data you will use? Temperature 0 K 100 K 273 K 298 K Pressure 1.0 Pa 100 Pa 1.0 bar 100 bar Concentration 1.0 g/L 1.0 mol/L 1.0 mg/L mol/kg Select the complete reactions (including phases) for the reaction between solid NaOH and a solution of HCl. 2NaOH(s) + HCl(aq) → 2NaCl(aq) + H2O(l) NaOH(s) + HCl(aq) → NaCl(aq) + H2O(l) NaOH(s) + HCl(aq) → NaCl(s) + H2O(l) Calculate the theoretical ΔH°r...
Chemical Reactions Types and Their Equations Making Heat with Chemical Reactions Have you ever wondered how...
Chemical Reactions Types and Their Equations Making Heat with Chemical Reactions Have you ever wondered how an instant heat pack works? A disposable heat pack works by a chemical reaction that combines iron in the package with oxygen from the air when the outer packaging is removed producing iron oxide. You have probably seen the product of this reaction in what is commonly called rust. The reaction releases heat, which allows the pack to reach a sufficient temperature that is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT