Question

A student obtained the following data for the decomposition of dinitrogen pentoxide in carbon tetrachloride solution...

A student obtained the following data for the decomposition of dinitrogen pentoxide in carbon tetrachloride solution at 30 °C.

N2O52 NO2(g) + ½ O2(g) [N2O5],

0.894 time 0 mins 0.447 time 124 mins 0.224 248 mins 0.112 372 minutes

(1a) What is the half-life for the reaction starting at t=0 min?

b) What is the half-life for the reaction starting at t=124 min?

c ) Does the half-life increase, decrease or remain constant as the reaction proceeds? (2) Is the reaction zero, first, or second order? (3) Based on these data, what is the rate constant for the reaction?

Homework Answers

Answer #1

when initial concerntration become half, at that point t = t1/2

(1a) Half-life for the reaction starting at t=0 min is as follow:

at t = 0, let initial conc. = N0 = 0.894

but at t = 124, conc. become 0.447 = 0.894/2 = N0/2

t1/2 for the reaction starting at t=0 min is 124 min.

(b) similarly,

Half-life for the reaction starting at t=124 min is as follow:

at t = 124, let initial conc. = N0 = 0.447

but at t = 248, conc. become 0.224 = 0.447/2 = N0/2

t1/2 for the reaction starting at t=124 min is 248 min.

(c) Half life will increase as the reaction proceeds.

the reaction is first order.

rate constant = 0.693/t1/2

= 0.693/124

=0.00558

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following data were obtained in a kinetic run from the decomposition of gaseous dinitrogen pentoxide...
The following data were obtained in a kinetic run from the decomposition of gaseous dinitrogen pentoxide at a set temperature. 2N2O5(g) = 4NO2(g) + O2(g) Time (s) 0 100 200 300 400 500 600 700 [N2O5]     0.0200 0.0169 0.0142 0.0120 0.0101 0.0086 0.0072 0.0061 a.Graphically determine the order of the reaction. b.Calculate the rate constant for the reaction. c.Calculate the concentration of dinitrogen pentoxide in the reaction vessel after 350 seconds.
1) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)  2 NO2(g) + ½ O2(g)...
1) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)  2 NO2(g) + ½ O2(g) is first order in N2O5 with a rate constant of 4.70×10-3 s-1. If the initial concentration of N2O5 is 0.105 M, the concentration of N2O5 will be  Mafter 391 s have passed. 2) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)2 NO2(g) + ½ O2(g) is first order in N2O5 with a rate constant of 4.70×10-3 s-1. If the initial concentration of...
The half-life for the decomposition of dinitrogen pentoxide, N2O5, is independent of concentration at 298 K....
The half-life for the decomposition of dinitrogen pentoxide, N2O5, is independent of concentration at 298 K. Determine the order of reaction at this temperature, giving a justification for your answer.
For the decomposition of gaseous dinitrogen pentoxide (shownbelow), the rate constant is k = 2.8 10-3...
For the decomposition of gaseous dinitrogen pentoxide (shownbelow), the rate constant is k = 2.8 10-3 s-1 at 60°C. The initialconcentration of N2O5 is 2.31 mol/L. 2 N2O5(g) 4NO2(g) + O2(g) (a) What is [N2O5] after 5.00 min? _____mol/L (b) What fraction of the N2O5 has decomposed after 5.00 min?
1. Dinitrogen pentoxide (N2O5) decomposes to NO2 and O2 at relatively low temperatures in the reaction...
1. Dinitrogen pentoxide (N2O5) decomposes to NO2 and O2 at relatively low temperatures in the reaction 2N2O5(soln) → 4NO2(soln) + O2(g) This reaction is carried out in a CCl4 solution at 45° C. The concentrations of N2O5 as a function of time are listed in the table. Plot a graph of the concentration versus t, ln (natural log) concentration versus t, and 1/concentration versus t. Graphically, determine the order of the reaction, write the rate law and calculate the value...
The rate constant for the first-order decomposition of N2O5 by the reaction 2 N2O5 (g) ...
The rate constant for the first-order decomposition of N2O5 by the reaction 2 N2O5 (g)  4 NO2(g) + O2(g) is k, = 3.38 x 10-5 s -1 at 25 C. What is the half-life of N2O5? What will be the partial pressure, initially 500 Torr, at ( a) 50 s; (b) 20 min, (c) 2 hr after initiation of the reaction?
The following data are obtained for the decomposition of N2O5 at a certain temperature: 2N2O5(g) ↔...
The following data are obtained for the decomposition of N2O5 at a certain temperature: 2N2O5(g) ↔ 4NO2(g) + O2(g) Time(s) 0 200 400 600 800 N2O5 (atm) 2.80 2.51 2.25 2.01 1.80 Find the rate constant kobs for this first-order decomposition reaction. (Enter in sec-1)
In a study of the gas phase decomposition of hydrogen peroxide at 400 °C H2O2(g)H2O(g) +...
In a study of the gas phase decomposition of hydrogen peroxide at 400 °C H2O2(g)H2O(g) + ½ O2(g) the following data were obtained: [H2O2], M 0.133 6.65×10-2 3.33×10-2 1.67×10-2 seconds 0 16.1 48.2 112 Hint: It is not necessary to graph these data. (1) The observed half life for this reaction when the starting concentration is 0.133 M is s and when the starting concentration is 6.65×10-2 M is s. (2) The average (1/[H2O2]) / t from t = 0...
Data for the decomposition of hydrogen peroxide at some set temperature T is include below. The...
Data for the decomposition of hydrogen peroxide at some set temperature T is include below. The rate law depends only on the concentration of H2O2. Answer questions 6, 7 and 8. 2 H2O2 ---> 2 H2O + O2 t (seconds)   0     ,   60    ,  120  ,   180 , 240 ,   360  ,   420 , 600 [H2O2] (M) 0.882, 0.697, 0.566 ,0.458, 0.372, 0.236, 0.188, 0.094 What is the value of the rate constant K? What is the half life of the reaction when the initial concentration...
For the reaction 2N2O5(g) → 4NO2(g) + O2(g), the following data were collected: t (minutes) [N2O5]...
For the reaction 2N2O5(g) → 4NO2(g) + O2(g), the following data were collected: t (minutes) [N2O5] (mol/L) 0 1.24 × 10–2 10. 0.92 × 10–2 20. 0.68 × 10–2 30. 0.50 × 10–2 40. 0.37 × 10–2 50. 0.28 × 10–2 70. 0.15 × 10–2 Reference: Ref 12-10 The half-life of this reaction is approximately