Question

What is the half-life of a first-order reaction with a rate constant of 4.20×10−4  s−1? (the answer...

What is the half-life of a first-order reaction with a rate constant of 4.20×10−4  s−1? (the answer is 1650s)

What is the rate constant of a first-order reaction that takes 458 seconds for the reactant concentration to drop to half of its initial value?

Homework Answers

Answer #1

The relation between half life (t1/2) and rate constant k can be given as:

t1/2 = 0.693 / k

k = 4.2 X 10-4 s-1 (given)

So, for first question, t1/2 = 0.693 / 4.2 X 10-4

                                         t1/2 = 0.165 X 104 = 1650 s

Similarily,

From above eq. rate constant for 1st order reaction, when t = t1/2

k =0.693 / t1/2

and t = t1/2 = 458 s (given)

So, k =0.693 / 458   = 0.00151 s

k = 1.51 X 10-3 s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Half-life equation for first-order reactions: t1/2=0.693k   where t1/2 is the half-life in seconds (s), and kis...
Half-life equation for first-order reactions: t1/2=0.693k   where t1/2 is the half-life in seconds (s), and kis the rate constant in inverse seconds (s−1). a) What is the half-life of a first-order reaction with a rate constant of 8.10×10−4  s^−1? Express your answer with the appropriate units. b) What is the rate constant of a first-order reaction that takes 151 seconds for the reactant concentration to drop to half of its initial value? Express your answer with the appropriate units. c) A...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products) has a rate constant of 4.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A],...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products ) has a rate constant of 5.10×10−3 s−1 at 45 ∘C . How many minutes does it take for the concentration of the...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. Answer: 6.42 min Part B A certain second-order reaction (B→products) has a rate constant of 1.35×10−3M−1⋅s−1 at 27 ∘Cand an initial half-life of 236 s . What is the concentration of the reactant B after...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Part B : A certain second-order reaction (B→products) has a rate constant of 1.10×10−3M−1⋅s−1 at 27 ∘C and an initial half-life of 278 s . What is the concentration of the reactant B after one half-life?
PLEASE MAKE SURE YOUR ANSWERS ARE CORRECT Part A What is the half-life of a first-order...
PLEASE MAKE SURE YOUR ANSWERS ARE CORRECT Part A What is the half-life of a first-order reaction with a rate constant of 7.60×10−4  s−1? Express your answer with the appropriate units. Part B A certain first-order reaction has a rate constant of 1.50×10−3 s−1. How long will it take for the reactant concentration to drop to 18 of its initial value? Express your answer with the appropriate units.
A) The rate constant for a certain reaction is k = 2.60×10−3 s−1 . If the...
A) The rate constant for a certain reaction is k = 2.60×10−3 s−1 . If the initial reactant concentration was 0.200 M, what will the concentration be after 16.0 minutes B)A zero-order reaction has a constant rate of 4.20×10−4M/s. If after 60.0 seconds the concentration has dropped to 9.00×10−2M, what was the initial concentration
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of time, or the time it would take for a certain concentration to be reached. The integrated rate law for a first-order reaction is: [A]=[A]0e−kt Now say we are particularly interested in the time it would take for the concentration to become one-half of its initial value. Then we could substitute [A]02 for [A] and rearrange the equation to: t1/2=0.693k This equation calculates the time...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of time, or the time it would take for a certain concentration to be reached. The integrated rate law for a first-order reaction is: [A]=[A]0e−kt Now say we are particularly interested in the time it would take for the concentration to become one-half of its inital value. Then we could substitute [A]02 for [A] and rearrange the equation to: t1/2=0.693k This equation caculates the time...
The decomposition of hydrogen peroxide (H2O2) is a first order reaction with a rate constant 1.8×10-5...
The decomposition of hydrogen peroxide (H2O2) is a first order reaction with a rate constant 1.8×10-5 s -1 at 20°C. (a) What is the half life (in hours) for the reaction at 20°C? (b) What is the molarity of H2O2 after four half lives if the initial concentration is 0.30 M? (c) How many hours will it take for the concentration to drop to 25% of its initial value? *Help please!!!*