Question

A solution is prepared by dissolving 20.2 mL of methanol in 100.0 mL of water. The...

A solution is prepared by dissolving 20.2 mL of methanol in 100.0 mL of water. The final volume of this solution is 118ml. The densities of methanol and water are 0.782 g/mL and 1.00 g/mL, respectively. For this solution, calculate the following-

molarity

molality

mass %

MOLE FRACTION

VOLUME OF SOLVENT

MASS OF SOLVENT

MOLES OF SOLVENT

VOLUME OF SOLUTE

MOLES OF SOLUTE

MASS OF SOLUTE

VOLUME OF SOLUTION

MASS OF SOLUTION

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solution is prepared by dissolving 20.2 mL of methanol (CH3OH) in 100.0 mL of water...
A solution is prepared by dissolving 20.2 mL of methanol (CH3OH) in 100.0 mL of water at 25 ∘C. The final volume of the solution is 118 mL. The densities of methanol and water at this temperature are 0.782 g/mL and 1.00 g/mL, respectively. For this solution, calculate each of the following. A. Molarity B. Molality C. Percent by Mass D. Mole fraction
A solution is prepared by dissolving 61.5 mL of methanol in 115.0 mL of water at...
A solution is prepared by dissolving 61.5 mL of methanol in 115.0 mL of water at 25 ∘C . The final volume of the solution is 173.4 mL . The densities of methanol and water at this temperature are 0.782 g/mL and 1.00 g/mL , respectively. For this solution, calculate each of the following. [Molarity, molality, mass percent]
A) A solution is prepared by dissolving 50.4 g sucrose (C12H22O11) in 0.332 kg of water....
A) A solution is prepared by dissolving 50.4 g sucrose (C12H22O11) in 0.332 kg of water. The final volume of the solution is 355 mL. For this solution, calculate the molarity. Express the molarity in units of moles per liter to three significant figures. B) Calculate the molality. Express the molality in units of moles per kilogram of solvent to three significant figures. C) Calculate the percent by mass.Express the percent by mass to three significant figures. D) Calculate the...
A solution was prepared by dissolving 26.0 g of KCl in 225 g of water. The...
A solution was prepared by dissolving 26.0 g of KCl in 225 g of water. The composition of a solution can be expressed in several different ways. Four of the most common concentration units are defined as follows:. mass %=mass of componenttotal mass of solution×100%; mole fraction (X)=moles of componenttotal moles of solution; molarity (M)=moles of soluteliters of solution; molality (m)=moles of solutemass of solvent (kg) Part A Calculate the mass percent of KCl in the solution. Part B Calculate...
Determine the molality of a solution of ethanol dissolved in methanol for which the mole fraction...
Determine the molality of a solution of ethanol dissolved in methanol for which the mole fraction of ethanol is 0.397. Give your answer to 2 decimal places Calculate the boiling point (in degrees C) of a solution made by dissolving 6.81 g of sucrose (C12H22O11) in 99.7 g of acetone. The Kbp of the solvent is 1.71 K/m and the normal boiling point is 56.2 degrees C. Give your answer to 2 decimal places When 11.8 g of an unknown,...
A solution is prepared by dissolving 29.0 g of glucose (C6H12O6) in 360 g of water....
A solution is prepared by dissolving 29.0 g of glucose (C6H12O6) in 360 g of water. The final volume of the solution is 382 mL . For this solution, calculate each of the following. A. Mole Fraction B. Mole Percent
A solution is prepared by dissolving 25.00 g of acetic acid (CH3COOH) in 750.0 g of...
A solution is prepared by dissolving 25.00 g of acetic acid (CH3COOH) in 750.0 g of water. The density of the resulting solution is 1.105 g/mL. A) Calculate the mass percent of acetic acid in the solution. B) Calculate the molarity of the solution. C) Calculate the molality of the solution. D) Calculate the mole fraction of acetic acid in the solution. E) What is the concentration of acetic acid in ppm?
A solution is prepared by dissolving 25.00 g of acetic acid in 750.0 g of water....
A solution is prepared by dissolving 25.00 g of acetic acid in 750.0 g of water. The density of the resulting solution is 1.105 g/ml. How would I calculate the molality, of the solution, the mole fraction of acetic acid in the solution, and what is the concentration of acetic acid in ppm?
± Introduction to Units of Concentration The composition of a solution can be expressed in several...
± Introduction to Units of Concentration The composition of a solution can be expressed in several different ways. Four of the most common concentration units are defined as follows:. mass %=mass of componenttotal mass of solution×100% mole fraction (X)=moles of componenttotal moles of solution molarity (M)=moles of soluteliters of solution molality (m)=moles of solutemass of solvent (kg) A solution was prepared by dissolving 33.0 g of KCl in 225 g of water. Part A Calculate the mass percent of KCl...
A 2.450×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving...
A 2.450×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.3 mL . The density of water at 20.0∘C is 0.9982 g/mL. Part A Calculate the molality of the salt solution. Part B Calculate the mole fraction of salt in this solution. Part C Calculate the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT