Question

The specific rotation, [α]D, for (-)-2-butanol is +14. What is the observed rotation for a solution...

The specific rotation, [α]D, for (-)-2-butanol is +14. What is the observed rotation for a solution of 3.3 g of (-)-2-butanol in 10 mL of water in a sample tube having a pathlength of 10 cm?

degrees .

The observed rotation of a solution of 1.7 g of a compound in 10 mL of water is +5.8 degrees. If the pathlength is 10 cm, what is the specific rotation of the compound?

degrees

Homework Answers

Answer #1

The specific rotation, [α]D, for (-)-2-butanol is +14. What is the observed rotation for a solution of 3.3 g of(-)-2-butanol in 10 mL of water in a sample tube having a pathlength of 10 cm?

[A]D = Aobserved / (C*l); where C = concentration, l = 10 cm = 1dm

C = mass/volume = 3.3/10 = 0.33 g/mL

+14 = Aobserved / ( 0.33 * 1)

Aobs = 14*(0.33*1)

Aobs = 4.62

B)

C = mass/V = 1.7/10 = 0.17

Abos = 5.8

D = 10 cm = 1 dm

[A]D = Aobserved / (C*l); where C = concentration, l = 10 cm = 1dm

[A]D = Aobserved / (C*l);

[A]D = 5.8 / (0.17*1) = 34.11

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1a.) The specific rotation, [α]D, for (-)-pseudoephedrine is -52. What is the observed rotation for a...
1a.) The specific rotation, [α]D, for (-)-pseudoephedrine is -52. What is the observed rotation for a solution of 0.70 g of (-)-pseudoephedrine in 10 mL of water in a sample tube having a pathlength of 10 cm? The observed rotation of a solution of 0.75 g of a compound in 10 mL of water is -4.6 degrees. If the pathlength is 10 cm, what is the specific rotation of the compound? 1b.) The specific rotation, [α]D, for (-)-2-butanol is +14....
1) The specific rotation, [α]D, for sucrose is +67. What is the observed rotation for a...
1) The specific rotation, [α]D, for sucrose is +67. What is the observed rotation for a solution of 0.50 g of sucrose in 10 mL of water in a sample tube having a pathlength of 10 cm? Answer in degrees. 2) The observed rotation of a solution of 1.3 g of a compound in 10 mL of water is +11 degrees. If the pathlength is 10 cm, what is the specific rotation of the compound?
1.) The specific rotation, [?]D, for sucrose is +67. What is the observed rotation for a...
1.) The specific rotation, [?]D, for sucrose is +67. What is the observed rotation for a solution of 0.70 g of sucrose in 10 mL of water in a sample tube having a pathlength of 10 cm? ___degrees . 2.) The observed rotation of a solution of 1.7 g of a compound in 10 mL of water is +13 degrees. If the pathlength is 10 cm, what is the specific rotation of the compound?
What observed rotation is expected when a 1.08M solution of (R)-2-butanol is mixed with an equal...
What observed rotation is expected when a 1.08M solution of (R)-2-butanol is mixed with an equal volume of a .540M solution of racemic 2-butanol, and the resulting solution is analyzed in a sample container that is 1dm long? The specific rotation of (R)-2 butanol is -13.9 degrees mL/g dm.
What observed rotation is expected when a 1.02 M solution of (R)-2-butanol is mixed with an...
What observed rotation is expected when a 1.02 M solution of (R)-2-butanol is mixed with an equal volume of a 0.510 M solution of racemic 2-butanol, and the resulting solution is analyzed in a sample container that is 1 dm long? The specific rotation of (R)-2-butanol is –13.9 degrees mL g–1 dm–1.
What observed rotation is expected when a 1.68 M solution of (R)-2-butanol is mixed with an...
What observed rotation is expected when a 1.68 M solution of (R)-2-butanol is mixed with an equal volume of a 0.840 M solution of racemic 2-butanol, and the resulting solution is analyzed in a sample container that is 1 dm long? The specific rotation of (R)-2-butanol is –13.9 degrees mL g–1 dm–1.
What observed rotation is expected when a 1.36 M solution of (R)-2-butanol is mixed with an...
What observed rotation is expected when a 1.36 M solution of (R)-2-butanol is mixed with an equal volume of a 0.680 M solution of racemic 2-butanol, and the resulting solution is analyzed in a sample container that is 1 dm long? The specific rotation of (R)-2-butanol is –13.9 degrees mL g–1 dm–1.
a)predict the observed rotation of a solution of (S) 2butanol (2g) in 10ml water using a...
a)predict the observed rotation of a solution of (S) 2butanol (2g) in 10ml water using a 1dm polarimeter tube and the D line of sodium at 25 °c given that (R)2butanol has [alpa]D 25 =-13.52 b) predict the observed rotation of a solution of (R) 2butanol (4g) and (S) 2 butanol (2g) in 10ml water using a 1dm polarimeter tube and D line of sodium at 25°C .what would be the specific rotation of the mixture if a further 2g...
The specific rotation of L-alanine in water (at 25°C) is +2.8. A chemist prepared a mixture...
The specific rotation of L-alanine in water (at 25°C) is +2.8. A chemist prepared a mixture of L-alanine and its enantiomer, and 3.50 g of the mixture was dissolved in 10.0 mL of water. This solution was then placed in a sample cell with a pathlength of 10.0 cm and the observed rotation was +0.70. Calculate the % ee of the mixture.
Assume that α-D-glucose and β-D-glucose are levorotatory and dextrorotatory respectively. The specific rotation Z of an...
Assume that α-D-glucose and β-D-glucose are levorotatory and dextrorotatory respectively. The specific rotation Z of an optically active compound in a set of conditions of temperature and wavelength is give by the equation: Z = observed optical rotation (°)/optical length (dm) and concentration (g/mL) A freshly prepared solution of α-D-glucose shows a specific rotation of =122°. Over time, the rotation of the solution gradually decreases and reaches equilibrium of 52.5°. In contrast a freshly prepared solution of β-D-glucose has a...