Question

Suppose that the reaction of Fe3+ and SCN– produces Fe(SCN)2+. 5.00 mL of 2.0 mM Fe3+...

Suppose that the reaction of Fe3+ and SCN– produces Fe(SCN)2+. 5.00 mL of 2.0 mM Fe3+ (aq) is mixed with 5.00 mL of 2.0 mM SCN– (aq). The student finds the equilibrium concentration of Fe(SCN)2+ to be 0.3 mM.

1. Write a balanced chemical equation for this reaction in solution.

2. Write an equilibrium constant expression for the reaction.

3. What is the initial number of moles of each species present?

4. What is the equilibrium number of moles of each species present?

5. What is the equilibrium concentration of each species present?

6. What is the value of the equilibrium constant?

Homework Answers

Answer #1

1. The balanced equation can be written as

Fe3+ + SCN- <======> Fe(SCN)+2

2. Equilibrium constant is written as

Keq = [Fe(SCN)+2 ]/[Fe3+][SCN-]

3. Initial number of moles

Molarity = moles/volume

moles = molarity x volume

moles = 2 x 10-3 /L 0.005 L

moles = 1 x 10-5 moles

The same value comes for SCN- (Since the values are same)

4. For calculating the equilibrium number of moles of Fe(SCN)+2 = Molarity x volume

= 3 x 10-4 x 0.01 = 3 x 10-6

Molarity is converted from 3.0mM to 3 x 10-4 moles and total volume is 10 ml (5ml of Fe3+ and 5ml of SCN-

equilibrium number of moles Fe+3 = initial moles of Fe+3- Equilibrium moles of FeSCN+2

= 1 x10-5 - 3 x10-6 = moles

5. concentration of Fe+3= moles of Fe+3 /volume = 0.7x10-5 /0.01 = 0.7x10-3

Same with SCN-

6. Keq = [Fe(SCN)+2 ]/[Fe3+][SCN-] = 3 x 10-4 / 0.7x10-3 x 0.7x10-3 = 612

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) A student mixes 5.00 mL of 2.00 x 10-3 M Fe(NO3)3 with 5.00 mL of...
1) A student mixes 5.00 mL of 2.00 x 10-3 M Fe(NO3)3 with 5.00 mL of 2.00 x 10-3 M KSCN. She finds that in the equilibrium mixture the concentration of FeSCN2+ is 1.40 x 10-4 M a) What is the initial concentration in solution of the Fe3+ and SCN- ? b) What is the equilibrium constant for the reaction? 2. Assume that the reaction studied is actually: Fe3+ (aq) + 2 SCN- (aq) ↔ Fe(SCN)2+ (aq) a) What is...
1. A student mixes 5.00 mL 2.00 x 10-3 M Fe(NO3) in 1 M HNO3 with...
1. A student mixes 5.00 mL 2.00 x 10-3 M Fe(NO3) in 1 M HNO3 with 3.00 mL 2.00 x 10-3 M KSCN and 2.00 mL of water. She finds that in the equilibrium mixture the concentration of FeSCN2+ is 7.0 x 10-5 M. Find Kc for the reaction Fe3+ (aq0 + SCN- (aq0 ------Fe(SCN)2+ (aq). Step 1 Find the number of moles Fe3+ and SCN- initially present. Step 2. How many moles of FeSCN2+ are in the mixture at...
3a. Suppose that 5.0 mL of a 0.0030M solution of Fe3+ is mixed with 10.0 mL...
3a. Suppose that 5.0 mL of a 0.0030M solution of Fe3+ is mixed with 10.0 mL of a 0.0060 M solution of SCN-. If the final equilibrium Fe(SCN)2+ concentration is measured to be 0.00524M, what are the final equilibrium concentrations for the other two species? 3b. Using the results from question 3a above, calculate the equilibrium constant K for the formation of Fe(SCN)2+ from SCN- and Fe3+.
A reaction mixture is formed by mixing 2.0 mL of 0.010 M Fe3+ and 2.0 mL...
A reaction mixture is formed by mixing 2.0 mL of 0.010 M Fe3+ and 2.0 mL of 0.010 M SCN–, and the diluting the solution to a total volume of 25.0 mL. Calculate the initial concentrations of Fe3+ and SCN– under these conditions. Some experiments have indicated that this reaction has an equilibrium constant, Kf , of approximately 300. Use the value of Kf = 300 to calculate the equilibrium concentrations of all three species given the initial concentrations from...
5.00 mL of 2.70E-3 M Fe(NO3)3 is mixed with 1.00 mL of 2.79E-3 M KSCN and...
5.00 mL of 2.70E-3 M Fe(NO3)3 is mixed with 1.00 mL of 2.79E-3 M KSCN and 4.00 mL of water. The equalibrium molarity of Fe(SCN)2+ is found to be 6.00E-5 M. If the reaction proceeds as shown below, what is the equilibrium molarity of Fe3+ and SCN-?
2.) FeSCN2+ equilibrium concentration was found to be 3.20 x 10-5 M in a solution made...
2.) FeSCN2+ equilibrium concentration was found to be 3.20 x 10-5 M in a solution made by mixing 5.00 mL of 1.00 x 10-3 M Fe(NO3)3 with 5.00 mL of 1.00 x 10-3 M HSCN. The H+ concentration is maintained at 0.500 M at all times since the HSCN and Fe3+ solutions were prepared using 0.500 M HNO3 in place of distilled water. a. How many moles FeSCN2+ are present at equilibrium? b. How many moles each of Fe3+ and...
A solution of 5.00 mL of 0.00300 M Fe(NO3)3, 4.00 mL of 0.00300 M KSCN, and...
A solution of 5.00 mL of 0.00300 M Fe(NO3)3, 4.00 mL of 0.00300 M KSCN, and 3.00 mL of 1.0 M HNO3 is mixed together and allowed to reach equilibrium. The concentration of Fe(SCN)2+ is found to be 2.72�10-4 M at equilibrium. Calculate the equilibrium constant for this reaction.
A student mixes 5.00 mL of 2.00 x 10‐3 M Fe(NO3)3 with 5.00 mL 2.00 x...
A student mixes 5.00 mL of 2.00 x 10‐3 M Fe(NO3)3 with 5.00 mL 2.00 x 10‐3 M KSCN. She finds that in the equilibrium mixture the concentration of FeSCN+2 is 1.40 x 10‐4 M. a.   What is the initial concentration in solution of the Fe+3 and SCN‐ ? b.   What is the equilibrium constant for the reaction? c. What happened to the K+ and the NO3 ‐ ions in this solution?
A solution of 5.00 mL of 0.00300 M Fe(NO3)3, 4.00 mL of 0.00300 M KSCN, and...
A solution of 5.00 mL of 0.00300 M Fe(NO3)3, 4.00 mL of 0.00300 M KSCN, and 3.00 mL of 1.0 M HNO3 is mixed together and allowed to reach equilibrium. The concentration of Fe(SCN)^2+ is found to be 2.72 x 10^-4 M at equilibrium. Calculate the equilibrium constant for this reaction.
1. When the system Fe3+(aq) + SCN-(aq) ⇌ FeSCN2+(aq) is at equilibrium, which one of the...
1. When the system Fe3+(aq) + SCN-(aq) ⇌ FeSCN2+(aq) is at equilibrium, which one of the following statements best describes the equilibrium state? a.neither the forward nor the reverse reaction has stopped b. the value of the equilibrium constant is 1 c. the concentrations of Fe3+, SCN-, and FeSCN2+ are always equal at equilibrium d. both the forward and the reverse reaction has stopped 2. Which of the following will change the value of an equilibrium constant? I) varying the...