Question

Use an ICE table to calculate the equilibrium amounts of all 3 chemicals if the initial...

Use an ICE table to calculate the equilibrium amounts of all 3 chemicals if the initial amounts are 0.20 M of each.

Fe3+(aq)+SCN-(aq)-----> (Fe(SCN)2+) Kc= 159

Homework Answers

Answer #1

Fe3+(aq) + SCN-(aq) -----> (Fe(SCN)2+) Kc= 159

Initial 0.2 M 0.2 M 0.2 M

at equilibrium 0.2 -x 0.2 -x 0.2 +x

Kc =   [Fe(SCN)2+] / [ Fe3+(aq)] [SCN-(aq)]

159 =   (0.2 +x) / (0.2 -x) (0.2 -x)

159 [ x2 -0.4 x + 0.04 ] = 0.2 +x

159 x2  - 63.6 x + 6.36 = 0.2 + x

159 x2  - 64.6 x + 6.16 = 0

On solving ,

x = 0.153 M

Therefore, equilibrium concentrations are

[Fe3+(aq)] = 0.2 -x = 0.2 - 0.153 = 0.047 M

[SCN-(aq)] = 0.2 -x = 0.2 - 0.153 = 0.047 M

[Fe(SCN)2+] = 0.2 + x = 0.2 + 0.153 = 0.353 M

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. When the system Fe3+(aq) + SCN-(aq) ⇌ FeSCN2+(aq) is at equilibrium, which one of the...
1. When the system Fe3+(aq) + SCN-(aq) ⇌ FeSCN2+(aq) is at equilibrium, which one of the following statements best describes the equilibrium state? a.neither the forward nor the reverse reaction has stopped b. the value of the equilibrium constant is 1 c. the concentrations of Fe3+, SCN-, and FeSCN2+ are always equal at equilibrium d. both the forward and the reverse reaction has stopped 2. Which of the following will change the value of an equilibrium constant? I) varying the...
An equilibrium solution is prepared by mixing 2.750 mL of 0.001650 M SCN-, 5.000 mL of...
An equilibrium solution is prepared by mixing 2.750 mL of 0.001650 M SCN-, 5.000 mL of 0.001650 M Fe3+, and 2.750 mL of 0.05000 M HNO3. The equilibrium solution’s absorbance is determined to be 0.9150. Using this absorbance value and a standard curve, you determine that the equilibrium concentration of Fe(SCN)2+ is 0.0001830 M. Prepare an ICE table for the equilibrium mixture. Include the initial concentrations, changes in concentrations, and the equilibrium concentrations of Fe3+, SCN- and Fe(SCN)2+. Using the...
Consider the following reaction: Fe3+(aq)+SCN−(aq)⇌FeSCN2+(aq) A solution is made containing an initial [Fe3+] of 1.0×10^−3 M...
Consider the following reaction: Fe3+(aq)+SCN−(aq)⇌FeSCN2+(aq) A solution is made containing an initial [Fe3+] of 1.0×10^−3 M and an initial [SCN−] of 7.8×10^−4 M . At equilibrium, [FeSCN2+]= 1.7×10^−4 M . Part A Calculate the value of the equilibrium constant (Kc). Express your answer using two significant figures. Kc =
1) A student mixes 5.00 mL of 2.00 x 10-3 M Fe(NO3)3 with 5.00 mL of...
1) A student mixes 5.00 mL of 2.00 x 10-3 M Fe(NO3)3 with 5.00 mL of 2.00 x 10-3 M KSCN. She finds that in the equilibrium mixture the concentration of FeSCN2+ is 1.40 x 10-4 M a) What is the initial concentration in solution of the Fe3+ and SCN- ? b) What is the equilibrium constant for the reaction? 2. Assume that the reaction studied is actually: Fe3+ (aq) + 2 SCN- (aq) ↔ Fe(SCN)2+ (aq) a) What is...
1. A student mixes 5.00 mL 2.00 x 10-3 M Fe(NO3) in 1 M HNO3 with...
1. A student mixes 5.00 mL 2.00 x 10-3 M Fe(NO3) in 1 M HNO3 with 3.00 mL 2.00 x 10-3 M KSCN and 2.00 mL of water. She finds that in the equilibrium mixture the concentration of FeSCN2+ is 7.0 x 10-5 M. Find Kc for the reaction Fe3+ (aq0 + SCN- (aq0 ------Fe(SCN)2+ (aq). Step 1 Find the number of moles Fe3+ and SCN- initially present. Step 2. How many moles of FeSCN2+ are in the mixture at...
A) a student measures out initial concentrations of 0.00111 M Fe3+and 0.00424 M SCN-. If the...
A) a student measures out initial concentrations of 0.00111 M Fe3+and 0.00424 M SCN-. If the equilibrium value of Fe(SCN)2+ is found to be 0.00047 M, what is the equilibrium concentrations of Fe3? B) From a plot of your calibration data, the slope is found to be 11.7. What will be the concentration of your absorbing species in a solution that has an absorbance of 0.372? C) Using the equilibrium reaction that you are using in your experiment, a student...
Q1) Kf([Fe(SCN)]2+)=8.9*102. What is the equilibrium concentration of Fe3+ if the initial concentrations are [Fe3+]=2.0M, [SCN-]=2.5M,...
Q1) Kf([Fe(SCN)]2+)=8.9*102. What is the equilibrium concentration of Fe3+ if the initial concentrations are [Fe3+]=2.0M, [SCN-]=2.5M, and [Fe(SCN)-]=0M? Answer in M. Do NOT use scientific notation! Q2)25.00mL of 0.2104M acetic acid (HAc) with Ka=1.8*10-5 is titrated with 0.2000M KOH. What is the pH after 15mL of KOH is added? Do NOT use scientific notation!
Suppose that the reaction of Fe3+ and SCN– produces Fe(SCN)2+. 5.00 mL of 2.0 mM Fe3+...
Suppose that the reaction of Fe3+ and SCN– produces Fe(SCN)2+. 5.00 mL of 2.0 mM Fe3+ (aq) is mixed with 5.00 mL of 2.0 mM SCN– (aq). The student finds the equilibrium concentration of Fe(SCN)2+ to be 0.3 mM. 1. Write a balanced chemical equation for this reaction in solution. 2. Write an equilibrium constant expression for the reaction. 3. What is the initial number of moles of each species present? 4. What is the equilibrium number of moles of...
Using your value of Keq, calculate the Fe3+, SCN-, and Fe(SCN)2+ equilibrium concentrations in the standard...
Using your value of Keq, calculate the Fe3+, SCN-, and Fe(SCN)2+ equilibrium concentrations in the standard test tube. Keq= 53.9519883 Fe3+ initial value= 0.1M SCN-intital value= 0.001M Fe(SCN)2+ equilibrium= 0.001M This is a question in my lab I was having dificulties with. I hope you can explain the way you achieved the value as well. Thank you. Can you please show how to complete this problem step-by-step?
Use the tabulated half-cell potentials to calculate the equilibrium constant (K) for the following balanced redox...
Use the tabulated half-cell potentials to calculate the equilibrium constant (K) for the following balanced redox reaction at 25°C. 3 I2(s) + 2 Fe(s) ? 2 Fe3+(aq) + 6 I-(aq) Use the tabulated half-cell potentials to calculate the equilibrium constant (K) for the following balanced redox reaction at 25°C. 3 I2(s) + 2 Fe(s) 2 Fe3+(aq) + 6 I-(aq) 3.5 × 10-59 8.9 × 10-18 1.7 × 1029 6.1 × 1058 1.1 × 1017 Please explain with each every detail...