Question

The enthaply of fusion of ice is 334 J/g. The heat capacity of liquid water is...

The enthaply of fusion of ice is 334 J/g. The heat capacity of liquid water is 4.18 j/gxC. What is the smallest number of ice cubes at 0C, each containing one mole of water necessary to cool 500 g of liquid water intially at 20 C to 0 C?

Homework Answers

Answer #1

molar mass of water = 18g/mole

no of moles of H2O = W/G.M.Wt

                                  = 500/18   = 27.8 moles

27.8 moles of water cool to 20C to 0C

heat capacity of water = 75.4J/mole-C0

   q   = n*C*T

         = 27.8*75.4*(20-0)

        = 41922.4 J   = 41.9224kj

Enthalpy of fusion of ice 6.02KJ/mole-C0

no of moles of ice cubes = 41.9224/6.02   = 7 moles of ice cubes

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the energy needed to heat 14.6 g ice at -10.0 °C to liquid water at...
Calculate the energy needed to heat 14.6 g ice at -10.0 °C to liquid water at 70.0 °C. The heat of vaporization of water = 2257 J/g, the heat of fusion of water = 334 J/g, the specific heat capacity of water = 4.18 J/g·°C, and the specific heat capacity of ice = 2.06 J/g·°C.
The heat capacity of liquid water is 4.18 J/g
The heat capacity of liquid water is 4.18 J/g
The constants for H2O are shown here: Specific heat of ice: sice=2.09 J/(g⋅∘C) Specific heat of...
The constants for H2O are shown here: Specific heat of ice: sice=2.09 J/(g⋅∘C) Specific heat of liquid water: swater=4.18 J/(g⋅∘C) Enthalpy of fusion (H2O(s)→H2O(l)): ΔHfus=334 J/g Enthalpy of vaporization (H2O(l)→H2O(g)): ΔHvap=2250 J/g How much heat energy, in kilojoules, is required to convert 36.0 g of ice at −18.0 ∘C to water at 25.0 ∘C ?
The specific heat capacity of liquid water is 4.18 J/g-K. How many joules of heat are...
The specific heat capacity of liquid water is 4.18 J/g-K. How many joules of heat are released when the temperature of 9.00 g of water decreases from 34.2 °C to 45.5 °C?
100. g of ice at 0 degrees C is added to 300.0 g of water at...
100. g of ice at 0 degrees C is added to 300.0 g of water at 60 degrees C. Assuming no transfer of heat to the surroundings, what is the temperature of the liquid water after all the ice has melted and equilibrium is reached? Specific Heat (ice)= 2.10 J/g C Specific Heat (water)= 4.18 J/g C Heat of fusion = 333 J/g Heat of vaporization= 2258 J/g
How much heat energy, in kilojoules, is required to convert 46.0 g of ice at −18.0...
How much heat energy, in kilojoules, is required to convert 46.0 g of ice at −18.0 ∘C to water at 25.0 ∘C ? Express your answer to three significant figures and include the appropriate units. The constants for H2O are shown here: Specific heat of ice: sice=2.09 J/(g⋅∘C) Specific heat of liquid water: swater=4.18 J/(g⋅∘C) Enthalpy of fusion (H2O(s)→H2O(l)): ΔHfus=334 J/g Enthalpy of vaporization (H2O(l)→H2O(g)): ΔHvap=2250 J/g
How much heat energy, in kilojoules, is required to convert 79.0 g of ice at −18.0...
How much heat energy, in kilojoules, is required to convert 79.0 g of ice at −18.0 ∘C to water at 25.0 ∘C ? Express your answer to three significant figures and include the appropriate units. The constants for H2O are shown here: Specific heat of ice: sice=2.09 J/(g⋅∘C) Specific heat of liquid water: swater=4.18 J/(g⋅∘C) Enthalpy of fusion (H2O(s)→H2O(l)): ΔHfus=334 J/g Enthalpy of vaporization (H2O(l)→H2O(g)): ΔHvap=2250 J/g
A refrigerator with COP = 3.50 is supplied withliquid water at 15 °C, and produces ice...
A refrigerator with COP = 3.50 is supplied withliquid water at 15 °C, and produces ice cubes at –5.0 °C. Every hour the refrigerator produces 1500 ice cubes, each with dimensions 2.0 cm × 2.0 cm × 3.0 cm. The inside of the refrigerator is maintained at –5.0 °C, and the outside is at 30 °C.The density of ice is 0.916 g/cm3. The specific heat of liquid water is 4.186 J/(g·K), the specific heat of ice is 2.108 J/(g·K), and...
11. Consider the following specific heat capacities: H2O (s) = 2.09 J/g·°C H2O (l) = 4.18...
11. Consider the following specific heat capacities: H2O (s) = 2.09 J/g·°C H2O (l) = 4.18 J/g·°C H2O (g) = 2.03 J/g·°C The heat of fusion for water is 334 J/g and its heat of vaporization is 2260 J/g. Calculate the amount of heat required to convert 93 g of ice at -36°C completely to liquid water at 35°C. 52 kJ 21 kJ 7 kJ 38 kJ
part A How much heat energy, in kilojoules, is required to convert 69.0 g of ice...
part A How much heat energy, in kilojoules, is required to convert 69.0 g of ice at −18.0 ∘C to water at  25.0 ∘C ? Part B How long would it take for 1.50 mol of water at 100.0 ∘C to be converted completely into steam if heat were added at a constant rate of 22.0 J/s ? Specific heat of ice: sice=2.09 J/(g⋅∘C) Specific heat of liquid water: swater=4.18 J/(g⋅∘C) Enthalpy of fusion (H2O(s)→H2O(l)): ΔHfus=334 J/g Enthalpy of vaporization (H2O(l)→H2O(g)):...