Question

The enthalpies of combustion in a constant-volume calorimeter for fumaric and maleic acids are -1337.21kJ mol-1...

The enthalpies of combustion in a constant-volume calorimeter for fumaric and maleic acids are -1337.21kJ mol-1 and -1306.43 kJ mol -1, respecively at approximately 25oC.

a) Calculate the enthalpies of formation of these isomers.

b) What is the difference in enthalpy between these isomers.

Homework Answers

Answer #1

formula for fumaric and maleic acids is C4H4O4
Their conbustion reaction is:
C4H4O4 + 3O2   ------> 4CO2 (g) + 2H2O (l)
deltaHf (CO2) = -393.51 KJ/mol
deltaHf (H2O) = -285.83 KJ/mol
deltaHf (O2) = 0 KJ/mol
a)
for fumaric acid:
C4H4O4 + 3O2   ------> 4CO2 (g) + 2H2O (l)
delta H(combustion) = 4*deltaHf (CO2) + 2*deltaHf (H2O) - delta Hf (C4H4O4) - 3*delta Hf (O2)
-1337.21 = 4* (-393.51) + 2*(-285.83) - delta Hf (C4H4O4) - 3*0
delta Hf (C4H4O4) = -808.49 KJ/mol   <-----Answer

for maleic acid:
C4H4O4 + 3O2   ------> 4CO2 (g) + 2H2O (l)
delta H(combustion) = 4*deltaHf (CO2) + 2*deltaHf (H2O) - delta Hf (C4H4O4) - 3*delta Hf (O2)
-1306.43 = 4* (-393.51) + 2*(-285.83) - delta Hf (C4H4O4) - 3*0
delta Hf (C4H4O4) = -839.27 KJ/mol <----Answer

b)
difference in enthalphy = -808.49 KJ/mol - ( -839.27 KJ/mol ) = 30.78 KJ/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
High-purity benzoic acid (C6H5COOH; heat of combustion = -3227 kJ mol-1 at constant volume) is a...
High-purity benzoic acid (C6H5COOH; heat of combustion = -3227 kJ mol-1 at constant volume) is a combustion standard for calibrating bomb calorimeters. A 1.221 g sample undergoes combustion in a bomb calorimeter (heat capacity =1365 J °C-1). a) Write the balanced combustion reaction under standard state conditions (1 mark) b) What temperature change is observed? c) If the reaction were performed in a coffee-cup calorimeter under standard state conditions with 1 mole of benzoid acid, estimate the value of the...
A 0.727 g sample of D-ribose (C5H10O5) was placed in a bomb calorimeter (constant volume) and...
A 0.727 g sample of D-ribose (C5H10O5) was placed in a bomb calorimeter (constant volume) and ignited in the presence of excess oxygen. The temperature was observed to rise by 0.910 K. In a separate experiment, 0.825 g of benzoic acid (C6H5CO2H) is similarly ignited in the same calorimeter, and is observed to cause an increase of the temperature of 1.940 K. The internal energy of combustion of benzoic acid is -3251 kJ mol-1. (a) Calculate the heat capacity of...
In order to calibrate a constant volume bomb calorimeter, the combustion of (7.450x10^-1) g of benzoic...
In order to calibrate a constant volume bomb calorimeter, the combustion of (7.450x10^-1) g of benzoic acid, C6H5COOH, was observed to cause the temperature in the calorimeter to rise from 25.000 to (2.87000x10^1) oC. The energy of combustion of benzoic acid, ΔU, is -3226.7 kJ mol-1. What is total heat capacity (C) of the calorimeter (including all its contents) in kJ oC-1?
When 2.25mg of anthracene was combusted in a constant volume bomb calorimeter, the temperature rose by...
When 2.25mg of anthracene was combusted in a constant volume bomb calorimeter, the temperature rose by 1.35K. Given that the standard molar enthalpy of combustion of anthracene at 298K is -7061 kJ/mol, calculate the heat capacity of the calorimeter.
At constant volume, the heat of combustion of a particular compound is –3146.0 kJ/mol. When 1.159...
At constant volume, the heat of combustion of a particular compound is –3146.0 kJ/mol. When 1.159 g of this compound (molar mass = 157.13 g/mol) was burned in a bomb calorimeter, the temperature of the calorimeter (including its contents) rose by 6.565 °C. What is the heat capacity (calorimeter constant) of the calorimeter?
A sample of solid azulene (C10H8) that weighs 0.4925 g is burned in an excess of...
A sample of solid azulene (C10H8) that weighs 0.4925 g is burned in an excess of oxygen to CO2(g) and H2O() in a constant-volume calorimeter at 25.00 °C. The temperature rise is observed to be 2.150 °C. The heat capacity of the calorimeter and its contents is known to be 9.455×103 J K-1. (a) Write and balance the chemical equation for the combustion reaction. Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or...
1. At constant volume, the heat of combustion of a particular compound, compound A, is –3409.0...
1. At constant volume, the heat of combustion of a particular compound, compound A, is –3409.0 kJ/mol. When 1.277 g of compound A (molar mass = 117.77 g/mol) was burned in a bomb calorimeter, the temperature of the calorimeter (including its contents) rose by 6.891 °C. Using this data, what is the heat capacity (calorimeter constant) of the calorimeter? 2. Suppose a 3.107 g sample of a second compound, compound B, was combusted in the same calorimeter, and the temperature...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.4137 g sample of bianthracene (C28H18) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.361×103 g of water. During the combustion the temperature increases from 24.82 to 27.25 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
Physical Chemistry Thermodynamics: The enthalpy of combustion of benzoic acid (C6H5COOH) is commonly used as the...
Physical Chemistry Thermodynamics: The enthalpy of combustion of benzoic acid (C6H5COOH) is commonly used as the standard for calibrating constant-volume bomb calorimeters; its value has been accurately determined to be —3226.7 kJ mol-1, (a) When 0.9862 g of benzoic acid was oxidized, the temperature rose from 21.84°C to 25.67°C. What is the heat capacity of the calorimeter? (b) In a separate experiment, 0.4654 g of glucose (C6H1206) was oxidized in the same calorimeter, and the temperature rose from 21.22°C to...
1. 0.1964 g sample of the solid quinone (C6H4O2) is combusted in a bomb calorimeter in...
1. 0.1964 g sample of the solid quinone (C6H4O2) is combusted in a bomb calorimeter in the presence of excess oxygen. The total heat capacity of the calorimeter including water is 1.560 kJ/°C. The temperature of the calorimeter increases initially from 22.000˚C to 25.200˚C. Write the balanced combustion reaction: (diff=3) a. Calculate the enthalpy of combustion of quinone in kJ/mol. b. Determine the enthalpy of formation of quinone (in kJ/mol). Use Appendix C from your textbook as needed. Hint: Write...