Question

At 284 oC the equilibrium constant for the reaction: 2 HBr(g) H2(g) + Br2(g) is KP...

At 284 oC the equilibrium constant for the reaction: 2 HBr(g) H2(g) + Br2(g) is KP = 1.85e-09. If the initial pressure of HBr is 0.00378 atm, what are the equilibrium partial pressures of HBr, H2, and Br2? p(HBr) = .

p(H2) = .

p(Br2) = .

Homework Answers

Answer #1

I'll assume the reaction is as follow: 2HBr(g) <--------> H2(g) + Br2(g)

Kp = pBr2 * pH2 / pHBr2

2HBr(g) <--------> H2(g) + Br2(g)   doing a ICE chart:

i. 0.00378 0 0

e. 0.00378-x x x

1.85x10-9 = x2 / (0.00378-x)2 Kp is a very low value, so we can assume that x is really low too so, we can assume too that 0.00378-x = 0.00378

1.85x10-9 = x2 / 1.43x10-5

x2 = 1.85x10-9 * 1.43x10-5

x = 1.63x10-7 atm = pBr2 = pH2

pHBr = 0.00378 - 1.63x10-7 = 0.0037789 atm

Hope this helps

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At 171 oC(degrees celsius) the equilibrium constant for the reaction: 2 HBr(g) H2(g) + Br2(g) is...
At 171 oC(degrees celsius) the equilibrium constant for the reaction: 2 HBr(g) H2(g) + Br2(g) is KP = 3.45e-11. If the initial pressure of HBr is 0.00819 atm, what are the equilibrium partial pressures of HBr, H2, and Br2?
Consider the reaction below and its Kp value at 350K: H2(g)   +   Br2(g)   <--->   2HBr(g)       Kp =...
Consider the reaction below and its Kp value at 350K: H2(g)   +   Br2(g)   <--->   2HBr(g)       Kp = 3.5 x 104 If the partial pressures of H2 = 0.024 atm and HBr = 5.07 atm, what is the equilibrium partial pressure of Br2? a. 12 atm b. 4.7 atm c. 0.26 atm d. 0.031 atm
The equilibrium constant Kp for the reaction C(s)+H2O(g)?CO(g)+H2(g) is 2.44 at 1000 K. What are the...
The equilibrium constant Kp for the reaction C(s)+H2O(g)?CO(g)+H2(g) is 2.44 at 1000 K. What are the equilibrium partial pressures of H2O, CO, and H2 if the initial partial pressures are PCO= 1.25 atm, and PH2= 1.60 atm? What is the equilibrium partial pressure of H2O? What is the equilibrium partial pressure of CO? What is the equilibrium partial pressure of H2?
1) The equilibrium constant, Kp, for the following reaction is 0.497 at 500 K: PCl5(g) <---...
1) The equilibrium constant, Kp, for the following reaction is 0.497 at 500 K: PCl5(g) <--- ----->PCl3(g) + Cl2(g) (reversible) Calculate the equilibrium partial pressures of all species when PCl5(g) is introduced into an evacuated flask at a pressure of 1.52 atm at 500 K.   PPCl5 = _____atm PPCl3 = ______atm PCl2 = ______atm 2) The equilibrium constant, Kp, for the following reaction is 55.6 at 698 K: H2(g) + I2(g) <----- ----> 2HI(g) (reversible) Calculate the equilibrium partial pressures...
For the equilibrium Br2(g) + Cl2(g) ⇌ 2 BrCl(g) the equilibrium constant Kp is 7.0 at...
For the equilibrium Br2(g) + Cl2(g) ⇌ 2 BrCl(g) the equilibrium constant Kp is 7.0 at 400 K. If a cylinder is charged with BrCl(g) at an initial pressure of 1.00 atm and the system is allowed to come to equilibrium what is the final (equilibrium) pressure of BrCl? For the equilibrium  the equilibrium constant  is 7.0 at 400 . If a cylinder is charged with  at an initial pressure of 1.00  and the system is allowed to come to equilibrium what is the...
For the equilibrium Br2(g) + Cl2(g) ⇌ 2 BrCl(g) the equilibrium constant Kp is 7.0 at...
For the equilibrium Br2(g) + Cl2(g) ⇌ 2 BrCl(g) the equilibrium constant Kp is 7.0 at 400 K. If a cylinder is charged with BrCl(g) at an initial pressure of 1.00 atm and the system is allowed to come to equilibrium what is the final (equilibrium) pressure of BrCl? For the equilibrium the equilibrium constant is 7.0 at 400 . If a cylinder is charged with at an initial pressure of 1.00 and the system is allowed to come to...
20. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180 ×...
20. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180 × 106 at 730°C. Starting with 4.20 moles of HBr in a 17.8−L reaction vessel, calculate the concentrations of H2, Br2, and HBr at equilibrium. [H2] = M [Br2] = M [HBr] = M
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180 × 106...
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180 × 106 at 730°C. Starting with 5.20 moles of HBr in a 12.9−L reaction vessel, calculate the concentrations of H2, Br2, and HBr at equilibrium.
For the equilibrium Br2(g) + Cl2(g) ⇌ 2 BrCl(g) the equilibrium constant Kp is 7.0 at...
For the equilibrium Br2(g) + Cl2(g) ⇌ 2 BrCl(g) the equilibrium constant Kp is 7.0 at 400 K. If a cylinder is charged with BrCl(g) at an initial pressure of 1.00 atm and the system is allowed to come to equilibrium what is the final (equilibrium) pressure of BrCl? For the equilibrium  the equilibrium constant  is 7.0 at 400 . If a cylinder is charged with  at an initial pressure of 1.00  and the system is allowed to come to equilibrium what is the...
At 400K, the equilibrium constant for the reaction I2(g) + F2(g) <==> 2 IF (g) Kp...
At 400K, the equilibrium constant for the reaction I2(g) + F2(g) <==> 2 IF (g) Kp = 7.0. A closed vessel at 400 K is charged with 1.46 atm I2, 1.46 atm F2, and 3.66 atm of IF. Which of the following statements is true? CAN YOU PLEASE EXPLAIN WHY? THANK YOU! A. The equilibrium partial pressures of I2 F2, and IF will not change. B. At equilibrium, the total pressure of IF wil be greater than 3.66 atm. C....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT