Question

Quantum Mechanics What are the complex conjugates of the following wavefunctions? (a) Ψ = 4x 3...

Quantum Mechanics

What are the complex conjugates of the following wavefunctions? (a) Ψ = 4x 3 (b) Ψ = 4 + 3i (c) Ψ = e − iE t ħ/h (d) Ψ(θ) = e iπθ (e) Ψ = i sin (3πx/ 2 )

Homework Answers

Answer #1

(a) Ψ = 4x 3:

= 12 Ψ(2 - Ψ1 ')

(b) Ψ = 4 + 3i

= 9Ψi ( Ψ i 2 + Ψi-1 )

(c) Ψ = e − iE t ħ/h

= e- = Eh2 / h Ψ2

(d) Ψ(θ) = e iπθ

ev/h = ( Ψ ( () 2 )2

(e) Ψ = i sin (3πx/ 2 )

=   Ψ cos Ψ (4nh2) = Ψ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the full time-dependent wavefunctions Ψ(x, t) = ψ(x)φ(t). For the case of an infinite square...
Consider the full time-dependent wavefunctions Ψ(x, t) = ψ(x)φ(t). For the case of an infinite square well in 1D, these were Ψn(x, t) = Sqrt (2/L) sin(nπx/L) e^(−i(En/h)t In general, the probability density |Ψn|2 is time-independent. But suppose instead of being ina fixed energy state, we are in a special state Ψmix(x, t) = √12(Ψ1 − iΨ2). What is the time-dependent part of |Ψmix|2?
Intro to Quantum Mechanics (Free particle) a). Write the relations between the wave vector and angular...
Intro to Quantum Mechanics (Free particle) a). Write the relations between the wave vector and angular frequency of a free particle and its momentum vector and energy. b) What is the general form in one dimension of the wave function for a free particle of mass m and momentum p? c) Can this wave function ever be entirely real? If so, show how this is possible. If not, explain why not. d) What can you say about the integral of...
Solve the following a) 2 cos^2(4x) + 5 cos(4x) + 2 = 0. b) arctan(3x +...
Solve the following a) 2 cos^2(4x) + 5 cos(4x) + 2 = 0. b) arctan(3x + 3) = π/4 c) 2^1+sin^2(x) = 4^sin(x) d) ln(x + 3) = ln(x) + ln(3)
The stream function for a given 2-D horizontal flow field is ψ = 4x^3 −12xy^2 ,...
The stream function for a given 2-D horizontal flow field is ψ = 4x^3 −12xy^2 , where the stream function has a unit of cubic meter per minute, while x and y in meters. a) Determine the flow velocity at two points in the flow field, A at (2, 0) and B at (0, 2). b) Estimate the rate of flow across the straight line between A and B. c) Show evidence that the flow is irrotational. d) Determine the...
The stream function for a given 2-D horizontal flow field is 3 2 ψ = 4x...
The stream function for a given 2-D horizontal flow field is 3 2 ψ = 4x −12xy , where the stream function has a unit of cubic meter per minute, while x and y in meters. a) Determine the flow velocity at two points in the flow field, A at (2, 0) and B at (0, 2). b) Estimate the rate of flow across the straight line between A and B. c) Show evidence that the flow is irrotational.
find the following for the function f(x)=3x^2+4x-4 a. f(0) b. f(3) c. f(-3) d. f(-x) e....
find the following for the function f(x)=3x^2+4x-4 a. f(0) b. f(3) c. f(-3) d. f(-x) e. -f(x) f. f(x+2) g. f(4x) h. f(x+h)
. In this question, i ? C is the imaginary unit, that is, the complex number...
. In this question, i ? C is the imaginary unit, that is, the complex number satisfying i^2 = ?1. (a) Verify that 2 ? 3i is a root of the polynomial f(z) = z^4 ? 7z^3 + 27z^2 ? 47z + 26 Find all the other roots of this polynomial. (b) State Euler’s formula for e^i? where ? is a real number. (c) Use Euler’s formula to prove the identity cos(2?) = cos^2 ? ? sin^2 ? (d) Find...
Show that x(t) =c1cosωt+c2sinωt, (1) x(t) =Asin (ωt+φ), (2)   and x(t) =Bcos (ωt+ψ)   (3) are all...
Show that x(t) =c1cosωt+c2sinωt, (1) x(t) =Asin (ωt+φ), (2)   and x(t) =Bcos (ωt+ψ)   (3) are all solutions of the differential equation d2x(t)dt2+ω2x(t) = 0. Show that thethree solutions are identical. (Hint: Use the trigonometric identities sin (α+β) =sinαcosβ+ cosαsinβand cos (α+β) = cosαcosβ−sinαsinβto rewriteEqs. (2) and (3) in the form of Eq. (1). To get full marks, you need to show the connection between the three sets of parameters: (c1,c2), (A,φ), and (B,ψ).) From Quantum chemistry By McQuarrie
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a are real and positive constants. (a) Normalize it. (b) Find Ψ(x, t). (c) Find |Ψ(x, t)| 2 . Express your result in terms of the quantity w ≡ p a/ [1 + (2~at/m) 2 ]. At t = 0 plot |Ψ| 2 . Now plot |Ψ| 2 for some very large t. Qualitatively, what happens to |Ψ| 2 , as time goes on? (d)...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the interval 0 ≤ x ≤ 1. (1) What is the normalization constant, C? (2) Express ψ(x,0) as a linear combination of the eigenstates of the infinite square well on the interval, 0 < x < 1. (You will only need two terms.) (3) The energies of the eigenstates are En = h̄2π2n2/(2m) for a = 1. What is ψ(x, t)? (4) Compute the expectation...