Question

A student pipetted 25.00 mL of a stock solution that was 0.1063 M HCl into a...

A student pipetted 25.00 mL of a stock solution that was 0.1063 M HCl into a 100.00 mL volumetric flask and diluted the solution to the volumetric flask calibration mark with deionized water. Calculate the concentration of the diluted solution.

Homework Answers

Answer #1

ANSWER.Given that 25 ml of 0.1063M HCl is pipetted into100 ml volumetric flask,so number of moles of both the solutions is same.let the number of moles in 25 ml of stock soltion=n1=M1V1 ----------(1) Let the number of moles in the diluted solution=n2=M2V2-------(2) M1=0.1063M ,V1=25 ml,V2=100ml, M2=? From(1) and (2) M1V1=M2V2 Substituting all the values in the above formula, 0.1063x25=100xM21

M2=2.66/100=0.0266M.

Concentration of diluted solution is 0.0266 M.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
20.40g Iron(III) oxalate is dissolved in enough water to give 250.0 ml of solution. 25.00 ml...
20.40g Iron(III) oxalate is dissolved in enough water to give 250.0 ml of solution. 25.00 ml of this solution is pipetted into a 100.0ml volumetric flask and diluted to the mark. A. Calculate the molarity of Iron(III) oxalate in the original solution. B. Calculate the molarity of the oxalate ion in the diluted solution.
A student obtains 100 mL of a 0.0002669 M solution of AgNO3. He labels this “solution...
A student obtains 100 mL of a 0.0002669 M solution of AgNO3. He labels this “solution #1.” He then pipets 5 mL of solution #1 into a 50 mL volumetric flask and dilutes to the mark with water. He labels this “solution #2.” He then pipets 10 mL of solution #1 into a 250 mL volumetric flask and dilutes to the mark with water. This is “solution #3.” Finally, the prepares “solution #4” by pipetting 17 mL of solution #3...
A student wishes to prepare 125-mL of a 0.155 M manganese(II) bromide solution using solid manganese(II)...
A student wishes to prepare 125-mL of a 0.155 M manganese(II) bromide solution using solid manganese(II) bromide, a 125-mL volumetric flask, and deionized water. (a) How many grams of manganese(II) bromide must the student weigh out? (b) Which of the following would NOT be an expected step in the procedure used by the student? 1)Add 125 mL of deionized water to the flask. 2)Carefully transfer the salt sample to the volumetric flask. 3)Carefully add water until the bottom of the...
A stock solution of 0.200 M Fe(NO3)3 solution is prepared in a 100 mL volumetric flask...
A stock solution of 0.200 M Fe(NO3)3 solution is prepared in a 100 mL volumetric flask with 1 M HNO3. 10 mL of this stock solution is then pipetted into a beaker and 40 mL of HNO3 is added. This new solution is solution A. Calculate the actual concentration of Fe(NO3)3, determine the number of moles delivered, and the molarity of solution A. 10 mL of solution A is then pipetted into another beaker and 15mL of HNO3 is added....
A student weighed 0.2053 g of ferrous ammonium sulfate hexahydrate into a small beaker, dissolved the...
A student weighed 0.2053 g of ferrous ammonium sulfate hexahydrate into a small beaker, dissolved the solid in deionized water, performed a quantitative transfer into a 50-mL volumetric flask, added 5 drops of 6 M sulfuric acid, and diluted to the mark with deionized water. What was the iron concentration in this solution in mg/L? Report your answer to 1 decimal place and do not report units.
Calculate the concentration of a solution of HCl if a 25.00 mL sample required 24.87 mL...
Calculate the concentration of a solution of HCl if a 25.00 mL sample required 24.87 mL of 0.1014 M NaOH to titrate to the endpoint.
A student used standard solutions of aspirin in a FeCl3-KCl-HCl mixture to plot a graph of...
A student used standard solutions of aspirin in a FeCl3-KCl-HCl mixture to plot a graph of molarity versus absorbance for diluted aspirin solutions of known concentration. The student determined the slope of the graph to be 4,862 M-1cm-1. Next the student measured out 0.219 grams of a headache medicine tablet and dissolved it in 10.0 ml of NaOH and then added enough water to make a 100 ml solution. Five ml of this solution was then added to another 100...
Using a 10 mL burette and a 100 mL volumetric flask you will prepare, in the...
Using a 10 mL burette and a 100 mL volumetric flask you will prepare, in the lab, standard solutions of ∼ 2, 4, 6, 8 and 10 ppm in Ca2+ from the ∼ 100 ppm standard. You will, of course, need to know these concentrations as precisely as possible. Suppose you have a standard solution which is 99.709 ppm in Ca2+ and 100.790 ppm in Na+. Using the 10 mL burette, you deliver 8.03 mL of this standard solution into...
A solution containing an unknown concentration of HBr was titrated with 0.100 M KOH. 25.00 mL...
A solution containing an unknown concentration of HBr was titrated with 0.100 M KOH. 25.00 mL of the HBr solution was pipetted into a beaker. The HBr solution was then titrated with the 0.100 M KOH and 18.60 mL of KOH was added to reach the end point. Calculate the concentration of the HBr in the original solution
What is the final concentration of methyl red if: A 0.05% solution of methyl red is...
What is the final concentration of methyl red if: A 0.05% solution of methyl red is prepared by dissolving 0.025 g in 20 mL of 95% ethanol in a 50- mL volumetric flask. Water is then added to within a few mL of the mark. ~0.1 M NaOH is added dropwise until all the solid dissolves and then diluted to the mark. 20 mL of this solution is then transfered into 50 mL of 95% ethanol in a 200 mL...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT