Question

The chemical reaction that causes iron to corrode in air is given by 4Fe+3O2→2Fe2O3 in which...

The chemical reaction that causes iron to corrode in air is given by

4Fe+3O2→2Fe2O3

in which at 298 K

ΔH∘rxn = −1684 kJ
ΔS∘rxn

= −543.7 J/K

Part A:

What is the standard Gibbs free energy for this reaction? Assume the commonly used standard reference temperature of 298 K.

Part B:

What is the Gibbs free energy for this reaction at 3652 K ? Assume that ΔH and ΔS do not change with temperature.

Part C:

At what temperature Teq do the forward and reverse corrosion reactions occur in equilibrium?

Homework Answers

Answer #1

A)

ΔH = -1684.0 KJ

ΔS = -543.7 J/K

= -0.5437 KJ/K

T = 298 K

use:

ΔG = ΔH - T*ΔS

ΔG = -1684.0 - 298.0 * -0.5437

ΔG = -1521.9774 KJ

Answer: -1522 KJ

B)

Now we have:

ΔH = -1684.0 KJ

ΔS = -543.7 J/K

= -0.5437 KJ/K

T = 3652 K

use:

ΔG = ΔH - T*ΔS

ΔG = -1684.0 - 3652.0 * -0.5437

ΔG = 302 KJ

Answer: 302 KJ

C)

ΔG = 0.0 KJ (because this is equilibrium)

ΔH = -1684.0 KJ

ΔS = -543.7 J/K

= -0.5437 KJ/K

use:

ΔG = ΔH - T*ΔS

0.0 = -1684.0 - T *-0.5437

T = 3097 K

Answer: 3097 K

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The chemical reaction that causes iron to corrode in air is given by 4Fe+3O2→2Fe2O3 in which...
The chemical reaction that causes iron to corrode in air is given by 4Fe+3O2→2Fe2O3 in which at 298 K ΔH∘rxn = −1684 kJ ΔS∘rxn = −543.7 J/K Gibbs free energy (G) is a measure of the spontaneity of a chemical reaction. It is the chemical potential for a reaction, and is minimized at equilibrium. It is defined as G=H−TS where H is enthalpy, T is temperature, and S is entropy. Part A What is the standard Gibbs free energy for...
The chemical reaction that causes iron to corrode in air is given by 4Fe(s)+3O2(g)→2Fe2O3(s) and ΔrH∘...
The chemical reaction that causes iron to corrode in air is given by 4Fe(s)+3O2(g)→2Fe2O3(s) and ΔrH∘ = −1684 kJ mol−1 ΔrS∘ = −543.7 J K−1 mol−1 a) What is the standard Gibbs energy change for this reaction? Assume the commonly used standard reference temperature of 298 K. b) What is the Gibbs energy for this reaction at 3652 K ? Assume that ΔrH∘ and ΔrS∘ do not change with temperature. c) The standard Gibbs energy change, ΔrG∘, applies only when...
The chemical reaction that causes magnesium to corrode in air is given by 2Mg+O2→2MgO in which...
The chemical reaction that causes magnesium to corrode in air is given by 2Mg+O2→2MgO in which at 298 K ΔH∘rxn = −1204 kJ ΔS∘rxn = −217.1 J/K Part A What is the standard Gibbs free energy for this reaction? Assume the commonly used standard reference temperature of 298 K. Express your answer as an integer and include the appropriate units. Part B What is the Gibbs free energy for this reaction at 5958 K ? Assume that ΔH and ΔS...
± Gibbs Free Energy: Temperature Dependence Gibbs free energy (G) is a measure of the spontaneity...
± Gibbs Free Energy: Temperature Dependence Gibbs free energy (G) is a measure of the spontaneity of a chemical reaction. It is the chemical potential for a reaction, and is minimized at equilibrium. It is defined as G=H−TS where H is enthalpy, T is temperature, and S is entropy. The chemical reaction that causes aluminum to corrode in air is given by 4Al+3O2→2Al2O3 in which at 298 K ΔH∘rxn = −3352 kJ ΔS∘rxn = −625.1 J/K Part A What is...
A. Using given data, calculate the change in Gibbs free energy for each of the following...
A. Using given data, calculate the change in Gibbs free energy for each of the following reactions. In each case indicate whether the reaction is spontaneous at 298K under standard conditions. 2H2O2(l)→2H2O(l)+O2(g) Gibbs free energy for H2O2(l) is -120.4kJ/mol Gibbs free energy for H2O(l) is -237.13kJ/mol B. A certain reaction has ΔH∘ = + 35.4 kJ and ΔS∘ = 85.0 J/K . Calculate ΔG∘ for the reaction at 298 K. Is the reaction spontaneous at 298K under standard conditions?
For a given reaction, ΔH = -26.6 kJ/mol and ΔS = -77.0 J/K⋅mol. The reaction is...
For a given reaction, ΔH = -26.6 kJ/mol and ΔS = -77.0 J/K⋅mol. The reaction is spontaneous ________. Assume that ΔH and ΔS do not vary with temperature. For a given reaction,  = -26.6 kJ/mol and  = -77.0 J/Kmol. The reaction is spontaneous ________. Assume that  and  do not vary with temperature. at T > 298 K at all temperatures at T < 345 K at T < 298 K at T > 345 K
he thermodynamic properties for a reaction are related by the equation that defines the standard free...
he thermodynamic properties for a reaction are related by the equation that defines the standard free energy, ΔG∘, in kJ/mol: ΔG∘=ΔH∘−TΔS∘ where ΔH∘ is the standard enthalpy change in kJ/mol and ΔS∘ is the standard entropy change in J/(mol⋅K). A good approximation of the free energy change at other temperatures, ΔGT, can also be obtained by utilizing this equation and assuming enthalpy (ΔH∘) and entropy (ΔS∘) change little with temperature. Part A For the reaction of oxygen and nitrogen to...
Assume we know the Gibbs free energy of reaction for a chemical reaction taking place at...
Assume we know the Gibbs free energy of reaction for a chemical reaction taking place at 298 K. What additional thermodynamic information do we need to know to compute the equilibrium constant of the reaction (a) at 298 K and (b) at 350 K? (You may assume that no phase transitions take place in this temperature range.)
Part A Calculate the standard enthalpy change for the reaction 2A+B⇌2C+2D where the heats of formation...
Part A Calculate the standard enthalpy change for the reaction 2A+B⇌2C+2D where the heats of formation are given in the following table: Substance ΔH∘f (kJ/mol) A -227 B -399 C 213 D -503 Express your answer in kilojoules. Answer= 273kJ Part B: For the reaction given in Part A, how much heat is absorbed when 3.70 mol of A reacts? Express your answer numerically in kilojoules. Part C: For the reaction given in Part A, ΔS∘rxn is 25.0 J/K ....
1.      Calculate the standard free energy change at 500 K for the following reaction. Cu(s) +...
1.      Calculate the standard free energy change at 500 K for the following reaction. Cu(s) + H2O(g) à CuO(s) + H2(g) ΔH˚f (kJ/mol) S˚ (J/mol·K) Cu(s)    0    33.3    H2O(g)    -241.8    188.7    CuO(s)    -155.2    43.5    H2(g)     0    130.6 2.      When solid ammonium nitrate dissolves in water, the resulting solution becomes cold. Which is true and why? a.      ΔH˚ is positive and ΔS˚ is positive b.      ΔH˚ is positive and ΔS˚...