Question

In one trial of the standardization of a Na2S2O3 solution, a 10.00 mL volume of 5.00×10-3...

In one trial of the standardization of a Na2S2O3 solution, a 10.00 mL volume of 5.00×10-3 M KIO3 is pipetted into a 250 mL Erlenmeyer flask. The solution is titrated to the endpoint with 15.96 mL of the Na2S2O3 solution. What is the molar concentration of this sodium thiosulfate solution?

*Note: answer is not 1.57*10^-3 M*

Homework Answers

Answer #1

The give problem is a part of iodine cloack experiment.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Standardization of the sodium thiosulfate solution Volume of 0.0100M KIO3 samples 10 mL Data Trial...
1. Standardization of the sodium thiosulfate solution Volume of 0.0100M KIO3 samples 10 mL Data Trial 1 Trial 2 Trial 3 Volume of Na2S2O3 Titrant Final Buret Reading 0.76 mL 0.73mL 0.78mL Initial Buret reading 7.00 mL 7.00 mL 7.00mL Net Volume of Na2S2O3 6.24 mL 6.27 mL 6.22 mL Calculated concentration of Na2S2O3 (?) M (?) M (?) 2. Molar Solubility of Ca(IO3)2 in pure water Temperature of the saturated solution of calcium iodate = 22.8 celcius Volume (or...
10.0 mL of a Cu2+ solution of unknown concentration was placed in a 250 mL Erlenmeyer...
10.0 mL of a Cu2+ solution of unknown concentration was placed in a 250 mL Erlenmeyer flask. An excess of KI solution was added. Indicator was added and the solution was diluted with H2O to a total volume of 75 mL. The solution was titrated with 0.20 M Na2S2O3. The equivalence point of the titration was reached when 14.45 mL of Na2S2O3 had been added. What is the molar concentration of Cu2+ in the unknown solution? 2Cu2+ + 4KI →...
The question: If the purity of thiosulfate exceeds 100% what could the explanation for that be?...
The question: If the purity of thiosulfate exceeds 100% what could the explanation for that be? More information if needed: I was doing experiment and was supposed to find out the purity of thiosulfate. I measured 1,3430 g of sodium thiosulfate and put that into 100mL volumetric glassware. I added de-ionized water, so that the solution would be 100mL together(the water and sodium thiosulfate). I put this solution into burette. Then I calculated the molarity of that solution by assuming...
Procedure Preparation of Reagents 1. Starch indicator will be provided 2. Solid potassium iodide will be...
Procedure Preparation of Reagents 1. Starch indicator will be provided 2. Solid potassium iodide will be available 3. 0.3 M H2SO4 will be available 4. ~0.04 M Sodium thiosulfate solution will be provided. You should be able to complete the experiment with 250 mL of this solution. 5. Preparation of 0.01M KIO3 Solution: a. Accurately weigh approximately 0.535 g of solid reagent and record the mass to 4 decimal places. b. Deliver the KIO3 to a 250 mL volumetric flask...
You are given a sulfuric acid solution of unknown concentration. You dispense 10.00 mL of the...
You are given a sulfuric acid solution of unknown concentration. You dispense 10.00 mL of the unknown solution into an Erlenmeyer flask and add 12.20 mL of distilled water and a drop of phenopthalein to the flask. You fill your buret with 0.103 M NaOH (aq) solution and begin the titration. During the titration you rinse the tip and the sides of the Erlenmeyer flask with 3.52 mL of distilled water. It requires 10.38 mL of your NaOH (aq) solution...
A dilute bleach solution that is 5.00% by volume is prepared by mixing a portion of...
A dilute bleach solution that is 5.00% by volume is prepared by mixing a portion of liquid bleach with DI H2O (i.e. 5.00 mL bleach per 100 mL of solution was used to make the 5.00% solution). A 25.00 mL sample of this bleach solution is analyzed according to the procedure described in the lab. It is found that 24.70 mL of a 0.168 M solution of Na2S2O3 is needed to reach the stoichiometric endpoint of the titration. Calculate the...
In lab data: Trial Fe(No3)3 mL KSCN mL H2O ML Total Vol. mL %T 1 5.00...
In lab data: Trial Fe(No3)3 mL KSCN mL H2O ML Total Vol. mL %T 1 5.00 5.00 0 10.00 13.2 2 5.00 4.00 1.00 10.00 18.4 3 5.00 3.00 2.00 10.00 24.2 4 5.00 2.00 3.00 10.00 43.4 trial %Transmittance Absorption [FeSCN] 2+ 1 13.2 ? ? 2 18.4 3 24.2 4 43.4 How do you calculate Absorption? Conc. Fe(NO3)3 solution used ? Conc. KSCN solution used ?
A stock solution of 0.200 M Fe(NO3)3 solution is prepared in a 100 mL volumetric flask...
A stock solution of 0.200 M Fe(NO3)3 solution is prepared in a 100 mL volumetric flask with 1 M HNO3. 10 mL of this stock solution is then pipetted into a beaker and 40 mL of HNO3 is added. This new solution is solution A. Calculate the actual concentration of Fe(NO3)3, determine the number of moles delivered, and the molarity of solution A. 10 mL of solution A is then pipetted into another beaker and 15mL of HNO3 is added....
A student mixes 5.00 mL of 2.00 x 10‐3 M Fe(NO3)3 with 5.00 mL 2.00 x...
A student mixes 5.00 mL of 2.00 x 10‐3 M Fe(NO3)3 with 5.00 mL 2.00 x 10‐3 M KSCN. She finds that in the equilibrium mixture the concentration of FeSCN+2 is 1.40 x 10‐4 M. a.   What is the initial concentration in solution of the Fe+3 and SCN‐ ? b.   What is the equilibrium constant for the reaction? c. What happened to the K+ and the NO3 ‐ ions in this solution?
1. A reaction requires a 100 mL NaOH solution with a pH = 11.00. The lab...
1. A reaction requires a 100 mL NaOH solution with a pH = 11.00. The lab has a stock solution of 0.10 M NaOH. a, Calculate the concentration of hydronium - ion, H3O+ in the target solution. b, Calculate the concentration of hydroxide - ion, OH- in the target solution. c, Calculate the concentration of sodium hydroxide, the target solution. d, Calculate the volume (in milliliters) of the stock solution needed to prepare the target solution. 2. Which of the...