Question

N moles of this gas undergoes the following cyclical process composed of four reversible steps: i....

N moles of this gas undergoes the following cyclical process composed of four reversible steps:

i. Isovolumetric cooling from state 1 (T1 and P1) to State 2 (T2 and P2);

ii. Isothermal expansion from state 2 (T2 and P2) to state 3 (T2 and P3);

iii. Isovolumetric heating from state 3 (T2 and P3) back to state 4 (T4 and P4); and

iv. Adiabatic compression from state 4 (T4 and P4) to state 1 (T1 and P1).

We know that the gas has heat capacities of CP and CV which do not change during the entire process and the rate of change of internal energy with volume is zero for this gas.

Calculate change in internal energy, change in enthalpy, entropy change, heat and work for path ii & iii. Your answers should ONLY include the terms N,R, CP, CV, b, T1, P1, P2, P3 and P4.

Homework Answers

Answer #1

(i) Isovolumetric cooling from state 1 (T1 and P1) to State 2 (T2 and P2);

Volume will be constant

So internal energy change = nCv (T2-T1)

Heat change = nCv (T2-T1)

Work done = 0

(ii) Isothermal expansion from state 2 (T2 and P2) to state 3 (T2 and P3);

The temperatrue is constant

Change in internal energy = 0

Work done = -Heat change

Work done = nRT2 (P2/P3)

(iii) Isovolumetric heating from state 3 (T2 and P3) back to state 4 (T4 and P4);

Change in volume = 0

So work done = 0

Heat change = Internal energy change = nCv(T4-T3 )

(iv) Adiabatic compression from state 4 (T4 and P4) to state 1 (T1 and P1)

Internal energy change = nCv (T1-T4)

Change in heat = 0

Work done = nCv (T1-T4)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ideal gas ethylene undergoes a reversible adiabatic compression by which its temperature increases from T1 =...
Ideal gas ethylene undergoes a reversible adiabatic compression by which its temperature increases from T1 = 300 K to T2 = 450 K. The molar entropy in the initial state is given as s1 = 100 J K–1 mol–1, and here, for ethylene, cp = ?T + c0 with ? = 0.1 J K–2 mol–1 and c0 = 13.1 J K–1 mol–1. Determine the change of the molar entropy s2 – s1 and the change of the chemical potential ?2...
) An ideal gas (Cp = 5 kcal/kmol, Cv = 3 kcal/kmol) is changed from 1...
) An ideal gas (Cp = 5 kcal/kmol, Cv = 3 kcal/kmol) is changed from 1 atm and 22.4 m3 to 10 atm and 2.24 m3 by the following reversible process     (i) Isothermal compression     (ii) Adiabatic compression followed by cooling at constant volume     (iii) Cooling at constant pressure followed by heating at constant volume Calculate the heat, work requirement, ?U and ?H for each process.                      
One mole of the gas Ar expands through a reversible adiabatic process, from a volume of...
One mole of the gas Ar expands through a reversible adiabatic process, from a volume of 1 L and a temperature of 300 K, to a volume of 5 L. A) what is the final temperature of the gas? B) How much work has the expansion carried out? C) What is the change in heat? Assume this is a mono-atomic ideal gas. Note by asker: as the gas is mono-atomic, cp=(5/2)*R, cv=(3/2)*R
1) A quantity of n moles of oxygen gas (CV = 5R/2 and Cp = 7R/2)...
1) A quantity of n moles of oxygen gas (CV = 5R/2 and Cp = 7R/2) is at absolute temperature T. You increase the absolute temperature to 2T. Find the change in internal energy of the gas, the heat flow into the gas, and the work done by the gas if the process you used to increase the temperature is isochoric. Express your answers in terms of the variables n, R, and T separated by commas. 2) Find the change...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded...
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded to a final pressure of 1 atm. The molar heat capacity of the gas at constant volume, Cv, is 3/2R and is independent of temperature. Calculate the work done, the heat absorbed, and the change in U and H for the gas if the process is carried out (1) isothermally and reversibly, and (2) adiabatically and reversibly. Having determined the final state of the...
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric...
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric expansion at 1 bar and the volume increases from 0.5 L to 1 L. (a) Find the heat per mole, the work per mole done, and the change in the molar internal energy, ΔUm, the molar enthalpy, ΔHm, for this process. b) What are the entropy changes ΔSm of the system and of the surroundings? Is this process spontaneous? Justify your answer.
1 mole of a gas undergoes a mechanically reversible isothermal expansion from an initial volume 1...
1 mole of a gas undergoes a mechanically reversible isothermal expansion from an initial volume 1 liter to a final volume 10 liter at 25oC. In the process, 2.3 kJ of heat is absorbed in the system from the surrounding. The gas follows the following formula: V=RTP+b where V is the molar specific volume, and Tand Pare temperature (abosolute) and gas pressure respectively. Given R= 8.314 J/(mol.K) and b= 0.0005 m3. Evaluate the following a) Work (include sign) b) Change...
2.25 moles of an ideal gas with Cv,m = 5R/2 are transformed irreversibly from an intital...
2.25 moles of an ideal gas with Cv,m = 5R/2 are transformed irreversibly from an intital state T=680 K and P= 1.15 bar to a final state T = 298 K and P = 4.75 bar a) Calculate change in internal energy, change in enthalpy, and change in entropy for this process b) Calculate change in internal energy, change in enthalpy, and change in entropy if this process was reversible.
14.1 Consider three processes that take 2.0 moles of a monatomic gas from p1= 1.00 x10^5...
14.1 Consider three processes that take 2.0 moles of a monatomic gas from p1= 1.00 x10^5 Pa and V1= 4.00 m^3 to V2= 1.00 m^3 :(i) isobaric, (ii) isothermal, and (iii) adiabatic. (a) What is the work done during each process? (b) What is the heat added/subtracted during each process?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT