Question

The gas phase reaction 2N2O5(g)->4NO2(g)+O2(g) has an activation energy of 103 kJ/mole, and the first order...

The gas phase reaction

2N2O5(g)->4NO2(g)+O2(g)

has an activation energy of 103 kJ/mole, and the first order rate constant is 1.16x10^-8 min^-1 at 231 K. what is the rate constant at 211K?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
ARRHENIUS EQUATION CALCULATIONS The activation energy for the gas phase decomposition of dinitrogen pentoxide is 103...
ARRHENIUS EQUATION CALCULATIONS The activation energy for the gas phase decomposition of dinitrogen pentoxide is 103 kJ. N2O52 NO2 + 1/2 O2 The rate constant at 319 K is 5.59×10-4 /s. The rate constant will be 6.37×10-3 /s at ______ K. PART 2 The activation energy for the gas phase isomerization of isopropenyl allyl ether is 123 kJ. CH2=C(CH3)-O-CH2CH=CH2CH3COCH2CH2CH=CH2 The rate constant at 432 K is 2.68×10-4 /s. The rate constant will be______ /s at 474 K.
13) For the reaction: 2N2O5(g) ?4NO2(g) +O2(g) the rate law is: ?[O2] ?t = k[N2O5] At...
13) For the reaction: 2N2O5(g) ?4NO2(g) +O2(g) the rate law is: ?[O2] ?t = k[N2O5] At 300 K, the half-life is 2.50
The rate constant for the reaction 2N2O5(g) → 4NO2(g) + O2(g) is equal to 3.41 x...
The rate constant for the reaction 2N2O5(g) → 4NO2(g) + O2(g) is equal to 3.41 x 10–5 s–1 at 30 ºC. If the initial concentration of N2O5 is 0.446 M what concentration of NO2 will be observed after 175 minutes? Assume that initially no NO2 was present in the reaction vessel.
The gas-phase reaction of NO with F2 to form NOF and F has an activation energy...
The gas-phase reaction of NO with F2 to form NOF and F has an activation energy of Ea = 6.30 kJ/mol and a frequency factor of A = 6.00×108M−1⋅s−1 . The reaction is believed to be bimolecular: NO(g)+F2(g)→NOF(g)+F(g) What is the rate constant at 695 ∘C ? Express your answer to three significant digits with the appropriate units. For compound units, place a multiplication dot between units (e.g. J⋅mol−1⋅K−1). (I got 2.74*10^8 M-1s-1 but it is wrong. I got a...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)?4NO2(g)+O2(g), at 70?C is 6.82×10?3s?1. Suppose we...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)?4NO2(g)+O2(g), at 70?C is 6.82×10?3s?1. Suppose we start with 2.90×10?2 mol of N2O5(g) in a volume of 1.5 L . a) How many moles of N2O5 will remain after 5.0 min ? b) How many minutes will it take for the quantity of N2O5 to drop to 2.0×10?2 mol? c) What is the half-life of N2O5 at 70?C?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10^−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10^−3 s−1. Suppose we start with 2.60×10^−2 mol of N2O5(g) in a volume of 2.4 L . How many moles of N2O5 will remain after 4.0 min ? How many minutes will it take for the quantity of N2O5 to drop to 1.9×10^−2 mol ? What is the half-life of N2O5 at 70∘C?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.30×10−2 mol of N2O5(g) in a volume of 1.8 L . a) How many moles of N2O5 will remain after 6.0 min ? b) How many minutes will it take for the quantity of N2O5 to drop to 1.6×10−2 mol ? c) What is the half-life of N2O5 at 70∘C?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.10×10−2 mol of N2O5(g) in a volume of 1.8 L . How many minutes will it take for the quantity of N2O5 to drop to 1.6×10−2 mol ?
1) A first order reaction has an activation energy of 66.6 kJ/mol and a frequency factor...
1) A first order reaction has an activation energy of 66.6 kJ/mol and a frequency factor (Arrhenius constant) of 8.78 x 1010 sec -1. Calculate the rate constant at 19 oC. Use 4 decimal places for your answer. 2) A first order reaction has a rate constant of 0.988 at 25 oC and 9.6 at 33 oC. Calculate the value of the activation energy in KILOJOULES (enter answer to one decimal place)
1.) The reaction C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol. At 600.0 K the rate...
1.) The reaction C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol. At 600.0 K the rate constant is 6.1×10−8 s−1. What is the value of the rate constant at 860.0 K? ?=_____ s−1 2.) A certain reaction has an activation energy of 47.01 kJ/mol. At what Kelvin temperature will the reaction proceed 7.50 times faster than it did at 357 K? ____ K 3.) Consider this reaction data. A⟶products T (K) k (s–1) 275 0.383 875 0.659 If you were...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT