Question

Question Part Submissions Used Mercury has the following physical properties: normal melting point = -39°C, normal...

Question Part Submissions Used Mercury has the following physical properties: normal melting point = -39°C, normal boiling point = 357°C, heat of fusion = 2.33 kJ/mol, heat of vaporization = 284 J/g, specific heat = 0.139 J/g·°C. Calculate ΔH for the conversion of 171 g of solid mercury at its freezing point to mercury vapor at its boiling point. Note that the heat of vaporization is in atypical units of J/g. To calculate that value, simply multiply so that units cancel to give J.

Homework Answers

Answer #1

moles of mercury = mass/ molar mass = 171 / 200.59 = 0.8525

Heat required to melt solid mercury = moles x heat of fusion = 0.8525 x 2.33 = 1.9863 KJ = 1986.3 J

heat required to raise temp of liquid mercury from -39 to 357 = specific heat x temp change x mass

                   = ( 0.139 ) x ( 357 -(-39)) x ( 171 = 0.139 x 396 x 171 =9412.5 J

Heat required tovaporise = heat of vaporisation x moles = 284 x 0.8525 = 242.11 J

Total heat required = sum of three heats = 1986.3+9412.5+242.11 = 11640.9 J = 11641 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
ethylene glycol is a colorless liquid at room temperature with the following properties: melting point is...
ethylene glycol is a colorless liquid at room temperature with the following properties: melting point is -12.9°C. boiling point 197.3°C heat of fusion is 159.50 J/g heat of vaporization is 1056.87 J/g heat capacity of the liquid is 2.41 J/g°C heat capacity of the gas 1.25 J/g°C If you had a sample of ethylene glycol at -10°C, what state would it be in (solid, liquid, or gas) if you decreased the temperature from -10°C to -20°C what phase change would...
ethylene glycol is a colorless liquid at room temperature with the following properties melting point is...
ethylene glycol is a colorless liquid at room temperature with the following properties melting point is -12.9°C. boiling point 197.3°C heat of fusion is 159.50 J/g, heat of vaporization is 1056.87 J/g heat capacity of the liquid is 2.41 J/g°C, heat capacity of the gas 1.25 J/g°C a) If you had a sample of ethylene glycol at -10°C, what state would it be in (solid, liquid, or gas) b) if you decreased the temperature from -10°C to -20°C what phase...
For cyclohexane, C6H12, the normal melting point is 6.47°C and the heat of fusion at this...
For cyclohexane, C6H12, the normal melting point is 6.47°C and the heat of fusion at this temperature is 31.3 J/g. Find the freezing point of a solution of 188 mg of pentane, C5H12, in 16.45 g of cyclohexane. Assume an ideally dilute solution and that only pure cyclohexane freezes out. R= 8.3145 J/mol.K, T(K)=T(°C)+273.15. The molecular weight of pentane is 72.15 g/mol
Constants for mercury at 1 atm heat capacity of Hg(l) 28.0 J/(mol·K) melting point 234.32 K...
Constants for mercury at 1 atm heat capacity of Hg(l) 28.0 J/(mol·K) melting point 234.32 K enthalpy of fusion 2.29 kJ/mol Calculate the heat energy released when 12.0 g of liquid mercury at 25.00° C is converted to solid mercury at its melting point. Energy: ?KJ
Information about Acetone (C3H6O) : Boiling Point= 56.1 C Melting Point= -94.7 C Heat of Vaporization=...
Information about Acetone (C3H6O) : Boiling Point= 56.1 C Melting Point= -94.7 C Heat of Vaporization= 31.3 kj/mol Heat of Fusion= 5.71 kj/mol Specific Heat Capacities: Csolid= 1.60 J/g*K Cliquid= 2.20 J/g*K Cgas= 1.30 J/g*K a) Draw a heating curve that starts at -50 C and goes to +100 C. Take into account that since the specific heats are different, the heating rates will also differ. b) What is the total energy change of a process in which 18.4 grams...
1. Calculate the heat energy released when 19.1 g of liquid mercury at 25.00 °C is...
1. Calculate the heat energy released when 19.1 g of liquid mercury at 25.00 °C is converted to solid mercury at its melting point. 2. A certain liquid has a vapor pressure of 92.0 Torr at 23.0 ∘C and 349.0 Torr at 45.0 ∘C. Calculate the normal boiling point of this liquid. 3.At 1 atm, how much energy is required to heat 45.0 g H2O(s) at −22.0 ∘C to H2O(g) at 151.0 ∘C?
An unknown material has a normal melting/freezing point of -29.1 °C, and the liquid phase has...
An unknown material has a normal melting/freezing point of -29.1 °C, and the liquid phase has a specific heat capacity of 178 J/(kg C°). One-tenth of a kilogram of the solid at -29.1 °C is put into a 0.132-kg aluminum calorimeter cup that contains 0.165 kg of glycerin. The temperature of the cup and the glycerin is initially 26.9 °C. All the unknown material melts, and the final temperature at equilibrium is 18.0 °C. The calorimeter neither loses energy to...
How much heat energy is required to convert 21.1 g of solid ethanol at -114.5 °C...
How much heat energy is required to convert 21.1 g of solid ethanol at -114.5 °C to gaseous ethanol at 191.5 °C? The molar heat of fusion of ethanol is 4.60 kJ/mol and its molar heat of vaporization is 38.56 kJ/mol. Ethanol has a normal melting point of -114.5 °C and a normal boiling point of 78.4 °C. The specific heat capacity of liquid ethanol is 2.45 J/g·°C and that of gaseous ethanol is 1.43 J/g·°C. ________kJ
A substance has the following properties: Heat capacities: 1.34 J/g oC (solid) 3.02 J/g oC (liquid)...
A substance has the following properties: Heat capacities: 1.34 J/g oC (solid) 3.02 J/g oC (liquid) 2.55 J/g oC (gas) Heat of Fusion = 4.23 kJ/mole Heat of Vaporization = 23.5 kJ/mole Melting Point = -30.0 oC Boiling Point = 88.5 oC Molar Mass = 69.3 g/mole How much energy (in kJ) would be needed to heat 555 g of this substance from 1 to 201oC?
The fluorocarbon compound C2Cl3F3 has a normal boiling point of 47.6 ∘C. The specific heats of...
The fluorocarbon compound C2Cl3F3 has a normal boiling point of 47.6 ∘C. The specific heats of C2Cl3F3(l) and C2Cl3F3(g) are 0.91 J/g⋅K and 0.67 J/g⋅K, respectively. The heat of vaporization for the compound is 27.49 kJ/mol. Calculate the heat required to convert 40.0 g of C2Cl3F3 from a liquid at 13.20 ∘C to a gas at 83.45 ∘C.