Question

A solution was prepared by dissolving 1.000 g of an unknown non-electrolyte in 50.00 g of...

A solution was prepared by dissolving 1.000 g of an unknown non-electrolyte in 50.00 g of CCl4. The freezing point of the solution was found to be -28.4°C. What is the molar mass of this unknown solute? (The freezing point of pure CCl4 is -22.3°C, and Kf for CCl4 is 29.8°C.kg/mol.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An aqueous solution containing 35.0 g of an unknown molecular (non-electrolyte) compound in 156.9 g of...
An aqueous solution containing 35.0 g of an unknown molecular (non-electrolyte) compound in 156.9 g of water was found to have a freezing point of -1.2 ∘C. Calculate the molar mass of the unknown compound. Calculate the molar mass of the unknown compound.
a) When 1.13 g of an unknown non-electrolyte is dissolved in 50.0 g of carbon tetrachloride,...
a) When 1.13 g of an unknown non-electrolyte is dissolved in 50.0 g of carbon tetrachloride, the freezing point decreased by 5.46 degrees C. If the Kfp of the solvent is 29.8 K/m, calculate the molar mass of the unknown solute. b) How many moles of solute particles are present in 4.78 mL of 0.304 M (NH4)2SO4? c) A 0.97 mass % aqueous solution of urea (CO(NH2)2) has a density of 1.12 g/mL. Calculate the molarity of the solution. Give...
An aqueous solution containing 36.2 g of an unknown molecular (non-electrolyte) compound in 146.1 g of...
An aqueous solution containing 36.2 g of an unknown molecular (non-electrolyte) compound in 146.1 g of water was found to have a freezing point of -1.2 ∘C. Calculate the molar mass of the unknown compound.
A solution is prepared by dissolving 0.24 g of a solute in 12.7 g of cyclohexane....
A solution is prepared by dissolving 0.24 g of a solute in 12.7 g of cyclohexane. What is the freezing point change, rTf? Round off answer to to one place after the decimal: __ . __ °C (MM, molar mass of solute = 128.19 g/mol)
An aqueous solution containing 36.3 g of an unknown molecular (non-electrolyte) compound in 144.2 g of...
An aqueous solution containing 36.3 g of an unknown molecular (non-electrolyte) compound in 144.2 g of water was found to have a freezing point of -1.2 ∘C.Calculate the molar mass of the unknown compound.
An aqueous solution containing 36.2 g of an unknown molecular (non-electrolyte) compound in 152.4 g of...
An aqueous solution containing 36.2 g of an unknown molecular (non-electrolyte) compound in 152.4 g of water was found to have a freezing point of -1.4 ∘C. Calculate the molar mass of the unknown compound. Express your answer using two significant figures.
A solution is prepared by mixing 12.0g of unknown electrolyte with 80.0g of water. The solutions...
A solution is prepared by mixing 12.0g of unknown electrolyte with 80.0g of water. The solutions freezes at -1.94C. The freezing point of pure water is 0.0C. the value of Kf for water is 1.86C/m. a) what is the molality of the solution? b)what are the moles of unknown electrolyte in the solution? c)what is the molecular weight of the unknown?
An aqueous solution containing 17.5 g of an unknown molecule (non electrolyte) compound in 100 g...
An aqueous solution containing 17.5 g of an unknown molecule (non electrolyte) compound in 100 g water has a freezing point of -1.8 degrees Celsius. Calculate the molar mass of the unknown compound
A student performing this experiment finds that dissolving 9.177 g of an unknown nonelectrolyte solute in...
A student performing this experiment finds that dissolving 9.177 g of an unknown nonelectrolyte solute in 49.617 g of water forms a solution which freezes at -1.36 oC. Calculate the molar mass of the unknown solute in g/mol. Kffor water is 1.86 oC/molal; assume the freezing point of pure water is 0.00oC. Enter your answer to the ones place.
The addition of 100 g of a non-volatile unknown compound to 750 g CCl4 lowered the...
The addition of 100 g of a non-volatile unknown compound to 750 g CCl4 lowered the freezing point of the solvent by 10.5 K at 1 atm. The normal freezing point of pure CCl4 is 250 K and the molar enthalpy of fusion is 2.7 kJ/mol. Calculate the molar mass of the compound.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT