Question

The rate constants of some reactions double with every 10 degree rise in temperature. Assume that...

The rate constants of some reactions double with every 10 degree rise in temperature. Assume that a reaction takes place at 280 K and 290 K. What must the activation energy be for the rate constant to double as described?

Homework Answers

Answer #1

thanks and hope you like the answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
calculate at room temperature: a) the ratio of the rate constants for two reactions that have...
calculate at room temperature: a) the ratio of the rate constants for two reactions that have the same pre-exponential value but have activation energies that differ by 40.0 kJ/mole b) the difference in the activation energies (Ea1-Ea2) when the first reaction has a pre-exponential value that is 5 times the pre-exponential value of the second reaction and where the rate constant of the first reaction is 100 times larger than the rate constant of the second reaction.
The Arrhenius equation shows the relationship between the rate constant k and the temperature T in...
The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different absolute...
Rate constants for the reaction A → B + C are 1.55 s-1 at 298 K...
Rate constants for the reaction A → B + C are 1.55 s-1 at 298 K and 17.2 s-1 at 308 K. A. What is the activation energy (Ea) for this reaction? B. What would the rate constant be at 318 K? C. What is the order of this reaction?
The Arrhenius equation shows the relationship between the rate constant k and the temperature Tin kelvins...
The Arrhenius equation shows the relationship between the rate constant k and the temperature Tin kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), Ais a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different absolute temperatures (T1and...
± The Arrhenius Equation The Arrhenius equation shows the relationship between the rate constant k and...
± The Arrhenius Equation The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction...
A. The Arrhenius equation shows the relationship between the rate constant k and the temperature T...
A. The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathematically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different...
It is often stated in many introductory chemistry texts that near room temperature, a reaction rate...
It is often stated in many introductory chemistry texts that near room temperature, a reaction rate doubles if the temperature increases by 10°. Calculate the activation energy of a reaction that obeys this rule exactly. Would you expect to find this rule violated frequently? [R=1.987 cal/mol•K=8.314 J/mol•K]? 2) An endothermic reaction A → B has a positive internal energy change, ΔE, or enthalpy change, ΔH. In such a case, what is the minimum value that the activation energy can have?...
Increased temperature increases the rate of all chemical reactions. However, increased temperature in some cases increases...
Increased temperature increases the rate of all chemical reactions. However, increased temperature in some cases increases and in other cases decreases the proportion of product relative to unreacted starting material. Draw reaction energy diagrams for exergonic and endergonic reactions, and explain why in both cases higher temperature increase the reaction rate, but has opposite effect on proportion of product.
Given that the initial rate constant is 0.0110s−1 at an initial temperature of 21 ∘C ,...
Given that the initial rate constant is 0.0110s−1 at an initial temperature of 21 ∘C , what would the rate constant be at a temperature of 200. ∘C for the same reaction described in Part A? Activation energy reaction for part A is 35.5 kJ/mol.
There are several factors that affect the rate of a reaction. These factors include temperature, activation...
There are several factors that affect the rate of a reaction. These factors include temperature, activation energy, steric factors (orientation), and also collision frequency, which changes with concentration and phase. All the factors that affect reaction rate can be summarized in an equation called the Arrhenius equation: k=Ae−Ea/RT where k is the rate constant, A is the frequency factor, Ea is the activation energy, R=8.314 J/(mol⋅K) is the universal gas constant, and T is the absolute temperature. __________________________________________________ A certain...