Question

15. Consider the following combustion reaction of propane. 3C3H8 + 5O2 → 3CO2 + 4H2O a)...

15. Consider the following combustion reaction of propane. 3C3H8 + 5O2 → 3CO2 + 4H2O

a) What mass of O2 , in g, would be needed to react with 0.421 kg of C3H8?

b) What mass of CO2 , in g, would be produced from the combustion of 0.421 kg of C3H8 with excess oxygen?

Homework Answers

Answer #1

A)
mass of C3H8 = 0.421 kg = 421 g
molar mass of C3H8 = 44.094 g/mol
mol of C3H8 = (mass)/(molar mass)
= 421/44.094
= 9.547784 mol


According to balanced equation
mol of O2 required = (5/3)* moles of C3H8
= (5/3)*9.547784
= 15.912974 mol

mass of O2 = number of mol * molar mass
= 15.912974*32
= 509 g
= 0.509 Kg
Answer: 0.509 Kg

B)

According to balanced equation
mol of CO2 formed = moles of C3H8
= 9.55 mol



mass of CO2 = number of mol * molar mass
= 9.55*44.01
= 420 g
= 0.420 Kg
Answer: 0.420 Kg

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the Combustion of Propane (C3H8)by O2 and H2o.                              C3H8 +5O2 --> 3Co2+ 4H2o D
Consider the Combustion of Propane (C3H8)by O2 and H2o.                              C3H8 +5O2 --> 3Co2+ 4H2o D)    At standard temperature and pressure, what volume of oxygen would be required to burn 100 g of propane? If air is 21 percent oxygen, what volume of air at STP would be required? E) At standard temperature and pressure, what volume of Co2 would be produced when 100g of propane are burned?
Consider the balanced equation for the combustion of propane, C3H8 C3H8(g) + 5O2(g)  3CO2(g) +...
Consider the balanced equation for the combustion of propane, C3H8 C3H8(g) + 5O2(g)  3CO2(g) + 4H2O(l) If propane reacts with oxygen as above a. what is the limiting reagent in a mixture containing 5.00 g of C3H8 and 10.0 g of O2? b. what mass of the excess reagent remains after the reaction ? c. what mass of CO2 is formed when 1.00 g of C3H8 reacts completely?
Consider the combustion reaction of propane gas: C3H8(g) + 5O2(g) → 4H2O(g) + 3CO2(g) Predict the...
Consider the combustion reaction of propane gas: C3H8(g) + 5O2(g) → 4H2O(g) + 3CO2(g) Predict the signs (+ positive, - negative, 0 zero, or CBD cannot be determined ), if possible, for the delta Ssystem. Use the symbol to fill the blank.
Given the following balanced reaction: C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(g) A.) Given 7.65 kg...
Given the following balanced reaction: C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(g) A.) Given 7.65 kg of C3H8 and 3.14 kg of O2,determine the limiting reagent B.)Determine the number of moles of CO2 produced C.)Determine the number of kg of CO2 produced D.)Determine the number of kg of excess reagent left E.)Given that only 1.88 kg of CO2 are actually produced what is the percent yeild?
C3H8 (l) + 5O2 (g) → 3CO2 (g) + 4H2O (l) A)How much work is done...
C3H8 (l) + 5O2 (g) → 3CO2 (g) + 4H2O (l) A)How much work is done at 1.2 atm and 334 K when 1 mole of propane undergoes combustion? B)How much work is done at 1.2 atm and 310 K when 102 grams of oxygen reacts with excess propane in this combustion reaction.?
1.     The combustion of methane can be written as: C3H8 + 5O2 == 3CO2 + 4H2O....
1.     The combustion of methane can be written as: C3H8 + 5O2 == 3CO2 + 4H2O. Determine (a) the theoretical combustion air, (b) the excess combustion air at 100% excess rate, and (c) the actual combustion air. Report the amount per lb-mole of C3H8 and per lb of C3H8.
In a typical reaction as below C3H8 + 5O2 = 3CO2 + 4H2O 88 kg (C3H8)...
In a typical reaction as below C3H8 + 5O2 = 3CO2 + 4H2O 88 kg (C3H8) is reacting with 160 moles of O2. Identify the extent of reaction for this?
#6 The following reaction shows combustion reaction of propane gas at 25 Celsius. C3H8(gas)+5O2(gas)<===> 3CO2(gas)+4H20(liq); deltaH=-2219.97...
#6 The following reaction shows combustion reaction of propane gas at 25 Celsius. C3H8(gas)+5O2(gas)<===> 3CO2(gas)+4H20(liq); deltaH=-2219.97 kJ/mol Initially 1L-chamber contained 2.03M of propane (C3H8), 3.50 M of oxygen (O2) and 0.030M of carbon dioxide (CO2). After equilibrium is reached, the chamber contained 1.53 M of propane (C3H8). a)Using the information given,calculate equlibrium constant (Kc) of thid reaction. b) After equilibrium is reached, if the chamber size is increased to 5L, predict the direction of equilibrium shift. Explian your answer. c)After...
Calculate ΔSuniv (in kJ/K mol) for the combustion of propane at 25 °C. C3H8(g) 5O2(g) -->...
Calculate ΔSuniv (in kJ/K mol) for the combustion of propane at 25 °C. C3H8(g) 5O2(g) --> 3CO2(g) 4H2O(g)
LP gas burns according to the following exothermic reaction: C3H8(g)+5O2(g)→3CO2(g)+4H2O(g)ΔH∘rxn=−2044kJ What mass of LP gas is...
LP gas burns according to the following exothermic reaction: C3H8(g)+5O2(g)→3CO2(g)+4H2O(g)ΔH∘rxn=−2044kJ What mass of LP gas is necessary to heat 1.5 L of water from room temperature (25.0 ∘C) to boiling (100.0 ∘C)? Assume that during heating, 14% of the heat emitted by the LP gas combustion goes to heat the water. The rest is lost as heat to the surroundings
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT