Question

Consider the following reversible heterogenous reaction: C(s)+CO2(g) <--> 2CO(g) When equilibrium is reached at a certain...

Consider the following reversible heterogenous reaction: C(s)+CO2(g) <--> 2CO(g)

When equilibrium is reached at a certain temperature, the total pressure of the system is found to be 5.17 atm. If the equilibbrium constant Kp for this reaction is equal to 1.67 at this temperature, calculate the equilibrium partial pressures of CO2 and CO gases.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the reaction: C(s) + CO2(g) = 2CO(g) Kp=168 at 1273 K A). A system containing...
Consider the reaction: C(s) + CO2(g) = 2CO(g) Kp=168 at 1273 K A). A system containing these ingredients is at equilibrium, and the partial pressure of CO2(g) is found to be 0.10 atm. What is the pressure of CO(g) under these conditions? B). What is the value of Kc for the reaction at 1273 K?
The equilibrium constant Kp for the reaction C(s)+H2O(g)?CO(g)+H2(g) is 2.44 at 1000 K. What are the...
The equilibrium constant Kp for the reaction C(s)+H2O(g)?CO(g)+H2(g) is 2.44 at 1000 K. What are the equilibrium partial pressures of H2O, CO, and H2 if the initial partial pressures are PCO= 1.25 atm, and PH2= 1.60 atm? What is the equilibrium partial pressure of H2O? What is the equilibrium partial pressure of CO? What is the equilibrium partial pressure of H2?
Consider the reaction, NH4CO2NH2(s)<---. 2NH3(g)+CO2(g), which at 300K, the equilibrium constant, Kp is 0.030 atm3. When...
Consider the reaction, NH4CO2NH2(s)<---. 2NH3(g)+CO2(g), which at 300K, the equilibrium constant, Kp is 0.030 atm3. When ammonium carbamate crystals, NH4CONH, are placed into a container with an unknown initial preassure of pure CO2, the crystals begin to decompose according to the reactio above. After equilibrium is reached, the ammonia pressure is found to be 0.200 atm. a. Cacluate Kc for this reaction at 300K b. calculate the total pressure in the container at equilibrium c. calculate the pressure of pure...
1. Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a...
1. Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain temperature contains 26.8 g CO and 2.35 g H2. At equilibrium, the flask contains 8.64 g CH3OH. Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature. 2. Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1358 torr and a H2O partial pressure of 1764 torr at 2000 K....
At 1000 K, Kp = 19.9 for the reaction Fe2O3(s)+3CO(g)⇌2Fe(s)+3CO2(g). What are the equilibrium partial pressures...
At 1000 K, Kp = 19.9 for the reaction Fe2O3(s)+3CO(g)⇌2Fe(s)+3CO2(g). What are the equilibrium partial pressures of CO and CO2 if CO is the only gas present initially, at a partial pressure of 0.940 atm ?
Calculate the value of Kp for the equation C(s) + CO2(g) <--> 2CO(g) Kp = ?...
Calculate the value of Kp for the equation C(s) + CO2(g) <--> 2CO(g) Kp = ? Given that at a certain temperature C(s) + 2H2O(g) <--> CO2(g) + 2H2(g) Kp1 = 3.15 H2(g) + CO2(g) <--> H20(g) + CO(g) Kp2 = 0.617
3. The rate of the reaction: 2CO(g) → CO2(g) + C(s) Was studied by injecting CO(g)...
3. The rate of the reaction: 2CO(g) → CO2(g) + C(s) Was studied by injecting CO(g) into a reaction vessel and measuring the total pressure at constant volume. Time (s) Ptotal (bar) 0 0.3331 398 0.3173 1002 0.2986 1801 0.2800 a) (2.5 points) Determine the partial pressure of CO at each time. b) (4.5 point) Determine the order of the reaction and the average value for the rate constant (with the correct units).
1) Consider the following reaction where Kc = 7.00×10-5 at 673 K. NH4I(s) --> NH3(g) +...
1) Consider the following reaction where Kc = 7.00×10-5 at 673 K. NH4I(s) --> NH3(g) + HI(g) A reaction mixture was found to contain 5.62×10-2 moles of NH4I(s), 1.12×10-2 moles of NH3(g), and 8.37×10-3 moles of HI(g), in a 1.00 liter container. Is the reaction at equilibrium? If not, what direction must it run in order to reach equilibrium? The reaction quotient, Qc, equals (???????) The reaction ????? A. must run in the forward direction to reach equilibrium. B. must...
1. The reaction I2(g) + Cl2(g) ⇔ 2 ICl(g) is at equilibrium when the partial pressures...
1. The reaction I2(g) + Cl2(g) ⇔ 2 ICl(g) is at equilibrium when the partial pressures are: I2 = 0.027 atm, Cl2 = 0.027 atm and ICl = 0.246 atm. The partial pressure of ICl is then increased to 0.500 atm by adding ICl. a. When the system re-establishes equilibrium, what is the partial pressure of Cl2(g)? b. When the system re-establishes equilibrium, what is the partial pressure of ICl(g) c. When the system re-establishes equilibrium, what is the partial...
1) The equilibrium constant, Kp, for the following reaction is 0.497 at 500 K: PCl5(g) <---...
1) The equilibrium constant, Kp, for the following reaction is 0.497 at 500 K: PCl5(g) <--- ----->PCl3(g) + Cl2(g) (reversible) Calculate the equilibrium partial pressures of all species when PCl5(g) is introduced into an evacuated flask at a pressure of 1.52 atm at 500 K.   PPCl5 = _____atm PPCl3 = ______atm PCl2 = ______atm 2) The equilibrium constant, Kp, for the following reaction is 55.6 at 698 K: H2(g) + I2(g) <----- ----> 2HI(g) (reversible) Calculate the equilibrium partial pressures...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT