Question

Using the thermochemical data and an estimated value of -2235.2 kJ/mol for the lattice energy for...

Using the thermochemical data and an estimated value of -2235.2 kJ/mol for the lattice energy for potassium oxide, calculate the value for the second electron affinity of oxygen [O + e- → O2−]. (The answer is 748.5 kJ/mol)

Quantity Numerical Value
(kJ/mol)
Enthalpy of atomization of K 89
Ionization energy of K 418.8
Enthalpy of formation of solid K2O -363

Enthalpy of formation of O(g) from O2(g)

249.1
First electron attachment enthalpy of O   -141.0

Homework Answers

Answer #1

since K2O we have 2K we multiply energies related to K by 2

Enthalphy of formation of K2O = 2 x Enthalphy of atomisation of K + 2 xIonization energy of K +

                          Enthalphy formation of O from O2 + 1st Electrona ffinity of O + second electron affinityO

                                                 + Lattice energy  

-363 = ( 2x89)+(2 x418.8)+249.1 -141 Electronaffinity 2 - 2235.2)

electron affinity of O 2nd = 748.5 KJ/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the second ionization energy of the metal M (ΔHion2° in kJ/mol) using the following data:...
Calculate the second ionization energy of the metal M (ΔHion2° in kJ/mol) using the following data: Lattice enthalpy of MO(s), ΔHl° = -2297 kJ/mol Bond dissociation enthalpy of O2(g) = +498 kJ/mol First electron affinity of O = -141 kJ/mol Second electron affinity of O = +744 kJ/mol Enthalpy of sublimation of M = + 102 kJ/mol First ionization energy of M = + 340 kJ/mol Standard enthalpy of formation of MO(s), ΔHf° = -336 kJ/mol Refer to the textbook...
Calculate the lattice energy for NaF (s) given the following sublimation of energy +109 kj/mol Hf...
Calculate the lattice energy for NaF (s) given the following sublimation of energy +109 kj/mol Hf for F (g) + 77 kj/mol first ionization energy of Na (g) +495 electron affinity of F(g) -328 enthalpy of formation of NaF(s) -570 kj/mol A. -177 B. 192 C. -804 D. -1047 E. -923
te the lattice energy for LiF(s) given the following: sublimation energy for Li(s) +166 kJ/mol ∆Hf...
te the lattice energy for LiF(s) given the following: sublimation energy for Li(s) +166 kJ/mol ∆Hf for F(g) +77 kJ/mol first ionization energy of Li(g) +520. kJ/mol electron affinity of F(g) –328 kJ/mol enthalpy of formation of LiF(s) –617 kJ/mol A. none of these B. –650. kJ/mol C. 285 kJ/mol D. 800. kJ/mol E. 1052 kJ/mol
The ionization energy for potassium is 419 kJ/mol. The electron affinity for bromine is -325 kJ/mol....
The ionization energy for potassium is 419 kJ/mol. The electron affinity for bromine is -325 kJ/mol. Use these values and Hess's law to calculate the change in enthalpy for the following reaction per mole of reagent: K(g)+Br(g)→K+(g)+Br−(g),      ΔH=? Express your answer with the appropriate units.
Born-Haber cycle for MgO. a. write the equation illustrating the steps shown in each part of...
Born-Haber cycle for MgO. a. write the equation illustrating the steps shown in each part of the Born-Haper cycle. b. using the information below, calculate the stadarn enthalpy formation for MgO. Be sure to label the steps of the cycle with equations and corresponding energy values. values. Lattice energy for MgO: -3791 kj/mol heat of sublimination for Mg: +147.7 kj/mol Bond dissociation for O2: +498.4 kj/mol First ionization energy for Mg: +738 kj/mol second ionization energy for Mg: +1451 kj/mol...
Given the following information: Energy of sublimation of K(s) = 77 kJ/mol Bond energy of HCl...
Given the following information: Energy of sublimation of K(s) = 77 kJ/mol Bond energy of HCl = 427 kJ/mol Ionization energy of K(g) = 419 kJ/mol Electron affinity of Cl(g) = –349 kJ/mol Lattice energy of KCl(s) = –705 kJ/mol Bond energy of H2 = 432 kJ/mol Calculate the net change in energy for the following reaction: 2K(s) + 2HCl(g) → 2KCl(s) + H2(g) ΔE = ______ kJ
Lattice energy for LiF(s) = -1047 kJ/mol Enthalpy of hydration for Li+(g) = -536 kJ/mol Enthalpy...
Lattice energy for LiF(s) = -1047 kJ/mol Enthalpy of hydration for Li+(g) = -536 kJ/mol Enthalpy of hydration for F–(g) = -502 kJ/mol Determine the enthalpy of solution for LiF(s), using the data provided.
Given the following information: Li(s) → Li(g) enthalpy of sublimation of Li(s) = 166 kJ/mol HF(g)...
Given the following information: Li(s) → Li(g) enthalpy of sublimation of Li(s) = 166 kJ/mol HF(g) → H(g) + F(g) bond energy of HF = 565 kJ/mol Li(g) → Li+(g) + e– ionization energy of Li(g) = 520. kJ/mol F(g) + e– → F–(g) electron affinity of F(g) = -328 kJ/mol Li+(g) + F–(g) → LiF(s) lattice energy of LiF(s) = -1047 kJ/mol H2(g) → 2H(g) bond energy of H2 = 432 kJ/mol Calculate the change in enthalpy for: 2Li(s)...
Use the Born Haber cycle (show relevant steps) to determine the lattice energy of CsCl (s)...
Use the Born Haber cycle (show relevant steps) to determine the lattice energy of CsCl (s) from the following data: Hf 0 [CsCl(s)] = -442.8 kJ/mol; enthalpy of sublimation of Cesium is 78.2 kJ/mol; enthalpy of dissociation of Cl2 (g) = 243 kJ/mol Cl2 ; IE1 for Cs(g) = 375.7 kJ/mol; electron affinity enthalpy-EA1 for Cl(g) = -349kJ/mol. - need answer fast - thanks
Potassium perchlorate (KClO4) has a lattice energy of -599 kJ/mol and a heat of hydration of...
Potassium perchlorate (KClO4) has a lattice energy of -599 kJ/mol and a heat of hydration of -548 kJ/mol. A) Find the heat of solution for potassium perchlorate when 10.2 g of potassium perchlorate is dissolved with enough water to make 118.5 mLof solution.