Question

CO2 and H2 are allowed to react until equilibrium is established as follows: CO2(g) + H2(g)...

CO2 and H2 are allowed to react until equilibrium is established as follows:
CO2(g) + H2(g) ↔ H2O(g) + CO(g)
Which of the following changes will cause the equilibrium position to shift to the right?

a. increase in the concentration of H2

b. decrease in the concentration of CO

c. decrease in the concentration of CO2

d. more than one correct response

e. no correct response

Homework Answers

Answer #1

a)

we are increasing concentration of a reactant

According to LeChattelier's Principle,

Adding reactant will shift reaction towards product side

Equilibrium moves to right

b)

we are decreasing concentration of a product

According to LeChattelier's Principle,

Removing product will shift reaction towards product side

Equilibrium moves to right

c)

we are decreasing concentration of a reactant

According to LeChattelier's Principle,

Removing reactant will shift reaction towards reactant side

Equilibrium moves to left

So, more than one correct response

Answer: d

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The Equilibrium constant Kc for the reaction H2(g) + CO2(g) -> H2O(g) + CO(g) is 4.2...
The Equilibrium constant Kc for the reaction H2(g) + CO2(g) -> H2O(g) + CO(g) is 4.2 at 1650 deg C. Initially .74 mol H2 and .74 mol CO2 are injected into a 4.6-L flask. Calculate the concentration of each species at equilibrium. H2= CO2 = H2O= CO=
At a certain temperature, the equilibrium constant for the reaction CO2(g) + H2(g) <-> CO(g) +...
At a certain temperature, the equilibrium constant for the reaction CO2(g) + H2(g) <-> CO(g) + H2O(g) Is Kc = 5.45. If 4.00 mol of CO2 and 4.00 mol of H2 are placed in a 4.00 L vessel and equilibrium is established, what will be the concentration of water? a) 0.821 M b) 0.735 M c) 0.547 M d) 0.507 M e) 0.700 M I am very bad at math so please list all the steps so I can understand...
Consider the following system at equilibrium CH4(g) + 2H2O(g) ↔ CO2(g) + 4H2(g). Suppose the concentration...
Consider the following system at equilibrium CH4(g) + 2H2O(g) ↔ CO2(g) + 4H2(g). Suppose the concentration of H2O is increased. (a) In which direction does the reaction shift to reestablish equilibrium? (b) What happens to the concentrations of CH4, CO2, and H2 as the reaction shifts to reestablish equilibrium?
Refer to the reaction system C(s) + H2O(g) ↔ CO(g) + H2(g) at equilibrium for which...
Refer to the reaction system C(s) + H2O(g) ↔ CO(g) + H2(g) at equilibrium for which ΔH°rxn = +131 kJ. Assume ideal gas behavior. Predict the direction in which the above equilibrium will shift as a result of the stated change in conditions. a) An increase in the reaction temperature. b) A decrease in the amount of C(s). c) A decrease in the reactor volume. d) An increase in PH2O. e) Addition of N2 gas to the reaction mixture.
Consider the following reaction. CO (g) +H2O (g) = CO2 (g) + H2 (g) If the...
Consider the following reaction. CO (g) +H2O (g) = CO2 (g) + H2 (g) If the reaction begins in a 10.00 L vessel with 2.5 mol CO and 2.5 mol H2O gas at 588K (Kc= 31.4 at 588 K). Calculate the concentration of CO, H2O, CO2, and H2 at equilibrium.
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kc=102 at 500 K A reaction mixture initially contains 0.120 M...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kc=102 at 500 K A reaction mixture initially contains 0.120 M COand 0.120 M H2O. A)What will be the equilibrium concentration of [CO]? B)What will be the equilibrium concentration of [H2O]? C)What will be the equilibrium concentration of [CO2]? D)What will be the equilibrium concentration of [H2]?
Determine how each of the following changes will affect the equilibrium reaction below (shift left, shift...
Determine how each of the following changes will affect the equilibrium reaction below (shift left, shift right, no change) H2O(g) + C(s) ↔ H2(g) + CO(g) ∆H° = 131 kJ a. increasing the temperature b. adding CO c. removing H2 c. removing H e. increasing the volume of the container f. adding more carbon to the reaction
Consider an equilibrium mixture in a closed vessel reacting according to the equation: H2O(g) + CO(g)  ...
Consider an equilibrium mixture in a closed vessel reacting according to the equation: H2O(g) + CO(g)   <====>     H2(g) + CO2(g) Which of the following statements will be correct if the volume of the vessel is reduced? [H2] is INCREASE [CO] will DECREASE [CO2] will INCREASE [CO] will remain UNCHANGED
The equilibrium constant, K c, is equal to 1.4 at 1200° K for the reaction: CO2(g)...
The equilibrium constant, K c, is equal to 1.4 at 1200° K for the reaction: CO2(g) + H2(g) ⇌ CO(g) + H2O(g) If 0.65 moles of CO2 and 0.65 moles of H2 are introduced into a 1.0-L flask, what will be the concentration of CO when equilibrium is reached? The equilibrium constant, K c, is equal to 1.4 at 1200° K for the reaction: CO2(g) + H2(g) ⇌ CO(g) + H2O(g) If 0.65 moles of CO2 and 0.65 moles of...
The equilibrium constant, K c, is equal to 1.4 at 1200° K for the reaction: CO2(g)...
The equilibrium constant, K c, is equal to 1.4 at 1200° K for the reaction: CO2(g) + H2(g) ⇌ CO(g) + H2O(g) If 0.35 moles of CO2 and 0.35 moles of H2 are introduced into a 1.0-L flask, what will be the concentration of CO when equilibrium is reached? The equilibrium constant, K c, is equal to 1.4 at 1200° K for the reaction: CO2(g) + H2(g) ⇌ CO(g) + H2O(g) If 0.35 moles of CO2 and 0.35 moles of...