Question

Consider an ideal gas enclosed in a 1.00 L container at an internal pressure of 10.0...

Consider an ideal gas enclosed in a 1.00 L container at an internal pressure of 10.0 atm.

Calculate the work, w, if the gas expands against a constant external pressure of 1.00 atm to a final volume of 20.0 L.

w=____J

Now calculate the work done if this process is carried out in two steps.

1. First, let the gas expand against a constant external pressure of 5.00 atm to a volume of 4.00 L

2. From there, let the gas expand to 20.0 L against a constant external pressure of 1.00 atm.

w=___J

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Gas in a container is at a pressure of 1.2 atm and a volume of 6.0...
Gas in a container is at a pressure of 1.2 atm and a volume of 6.0 m3. (a) What is the work done on the gas if it expands at constant pressure to twice its initial volume? ___J (b) What is the work done on the gas if it is compressed at constant pressure to one-quarter of its initial volume? ___J
A system expands from a volume of 1.00 L to 2.00 L against a constant external...
A system expands from a volume of 1.00 L to 2.00 L against a constant external pressure of 1.00 atm. What is the work (w) done by the system? (1 L·atm = 101.3 J)
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in a cylinder with a piston. The gas first expands isobarically to 20.0 L (step 1). It then cools at constant volume back to 275 K (step 2), and finally contracts isothermally back to 10.0 L (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in a cylinder with a piston. The gas first expands isobarically to 20.0 L (step 1). It then cools at constant volume back to 275 K (step 2), and finally contracts isothermally back to 10.0 L (step 3). a) Show the series of processes on a PV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...
10.0 L of an ideal diatomic gas at 2.00 atm and 275 K are contained in...
10.0 L of an ideal diatomic gas at 2.00 atm and 275 K are contained in a cylinder with a piston. The gas first expands isobarically to 20.0 L (step 1). It then cools at constant volume back to 275 K (step 2), and finally contracts isothermally back to 10.0 L (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...
150 grams of C2H6 an ideal gas has an initial pressure of 9120 mmHg and a...
150 grams of C2H6 an ideal gas has an initial pressure of 9120 mmHg and a temperature of 300 K. At a constant temperature and moles, the gas changes to a final pressure is 2280 mmHg. a) Calculate the initial and final volumes (L) b) Calculate the work done (in kJ) for the gas volume change if it is carried out against a constant external pressure of 6 atm. (1 L atm = 101.325 J) c) Using answer 5b, is...
An ideal gas with γ=1.4 occupies 5.0 L at 300 K and 120 kPa pressure and...
An ideal gas with γ=1.4 occupies 5.0 L at 300 K and 120 kPa pressure and is heated at constant volume until its pressure has doubled. It's then compressed adiabatically until its volume is one-fourth its original value, then cooled at constant volume to 300 K , and finally allowed to expand isothermally to its original state. Find the net work done on the gas. W= ___J
The working substance of an engine is 1.00 mol of a monatomic ideal gas. The cycle...
The working substance of an engine is 1.00 mol of a monatomic ideal gas. The cycle begins at P1=1.00 atm and V1=24.6L. The gas is heated at constant volume to P2=2.00atm. It then expands at constant pressure until its volume is 49.2L. The gas is then cooled at constant volume until its pressure is again 1.00 atm. It is then compressed at constant pressure to its original state. All the steps are quasi-static and reversible. Calculate the TOTAL work done...
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm...
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm and a temperature of 20.0OC. The gas is compressed adiabatically to a final pressure of 5.00 atm. Find: (a) the initial volume of the gas; (b) the final volume of the gas; (c) the final temperature of the gas; (d) the work done by the gas during the compression. Answers: (a) 72.1 L; (b) 27.5 L; (c) 285 OC; (d) -97.8 atm-L Please show...
Consider 1.00 mol of an ideal gas (CV = 3/2 R) occupying 22.4 L that undergoes...
Consider 1.00 mol of an ideal gas (CV = 3/2 R) occupying 22.4 L that undergoes an isochoric (constant volume) temperature increase from 298 K to 342 K. Calculate ∆p, q , w, ∆U, and ∆H for the change. For Units, pressure in atm and the rest in J.