Question

A photocell, such as that illustrated in Figure 6.7(b), is a device used to measure the...

A photocell, such as that illustrated in Figure 6.7(b), is a device used to measure the intensity of light. In a certain experiment, when light of wavelength 590 nm is directed on to the photocell, electrons are emitted at the rate of 5.6 ✕ 10-13 C/s. Assume that each photon that impinges on the photocell emits one electron.

How many photons per second are striking the photocell?

How much energy per second is the photocell absorbing?

Homework Answers

Answer #1

The charge of an electron = 1.6*10-19 Coulomb (C)

i.e. 5.6*10-13 C = (5.6*10-13/1.6*10-19) electrons = 3.5*106 electrons

Here, each photon that strikes on the photo cell emits one electron.

Hence, the no. of photons striking the photocell per second (N) = 3.5*106

The energy of N-photons can be calculated as follows.

E = Nhc/, where h is the Planck's constant = 6.626*10-34 Js, c is the velocity of light = 3*108 m/s and = 590 nm

i.e. E = (3.5*106 * 6.626*10-34 Js * 3*108 m/s)/(590*10-9 m)

i.e. E = 1.18*10-12 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
One way to measure ionization energies is ultraviolet photoelectron spectroscopy (UPS, or just PES), a technique...
One way to measure ionization energies is ultraviolet photoelectron spectroscopy (UPS, or just PES), a technique based on the photoelectric effect. In PES, monochromatic light is directed onto a sample, causing electrons to be emitted. The kinetic energy of the emitted electrons is measured. The difference between the energy of the photons and the kinetic energy of the electrons corresponds to the energy needed to remove the electrons (that is, the ionization energy). Suppose that a PES experiment is performed...
A sodium lamp emits light at the power P = 90.0 W and at the wavelength...
A sodium lamp emits light at the power P = 90.0 W and at the wavelength λ = 597 nm, and the emission is uniformly in all directions. (a) At what rate are photons emitted by the lamp? (b) At what distance from the lamp will a totally absorbing screen absorb photons at the rate of 1.00 photon /cm2s? (c) What is the rate per square meter at which photons are intercepted by a screen at a distance of 1.30...
Consider a laser pointer that emits red light with wavelength 650 nm. This light is used...
Consider a laser pointer that emits red light with wavelength 650 nm. This light is used for a photoelectric effect experiment where the anode in the evacuated glass tube is made up of a material that has work function equal to 1 eV. [1] What is the energy of an individual photon that comes out of the laser pointer? [2] What is the maximum kinetic energy of an emitted electron?
In two-photon ionization spectroscopy, the combined energies carried by two different photons are used to remove...
In two-photon ionization spectroscopy, the combined energies carried by two different photons are used to remove an electron from an atom or molecule. In such an experiment a aluminum atom in the gas phase is to be ionized by two different light beams, one of which has wavelength 395 nm. What is the maximum wavelength for the second beam that will cause two-photon ionization? Hint: The ionization energy of aluminum is 577.6 kJ/mol nm?
(1) (A) If the power output of a 675 kHz radio station is 53.0 kW, how...
(1) (A) If the power output of a 675 kHz radio station is 53.0 kW, how many photons per second are produced? If the radio waves are broadcast uniformly in all directions, find the number of photons per second per square meter at a distance of 130 km. Assume no reflection from the ground or absorption by the air. (B)Photoelectrons from a material whose work function is 2.39 eV are ejected by 477 nm photons. Once ejected, how long does...
1. Why might a stream of red photons not cause an electron to be emitted from...
1. Why might a stream of red photons not cause an electron to be emitted from a gold surface? A. The stream of red photons might not be hitting the surface with enough total energy per second B. An electron absorbs the energy of one photon, and the red photon has too small of a wavelength to deliver enough energy. C. An electron absorbs the energy of one photon, and the red photon has too small of a frequency to...
In two-photon ionization spectroscopy, the combined energies carried by two different photons are used to remove...
In two-photon ionization spectroscopy, the combined energies carried by two different photons are used to remove an electron from an atom or molecule. In such an experiment a copper atom in the gas phase is to be ionized by two different light beams, one of which has wavelength 327 nm. What is the maximum wavelength for the second beam that will cause two-photon ionization? Please answer in nanometers Hint: The ionization energy of copper is 745.4 kJ/mol please
The emission wavelength of such a scintillator1 lies between 275 nm and 450 nm and the...
The emission wavelength of such a scintillator1 lies between 275 nm and 450 nm and the light yield per neutron is reported to be 20000 photons/MeV neutron energy. Now, you are asked to help design a new photodetector, which receives the light emitted from that scintillator. How much charge is being generated per single neutron, assuming a 3 MeV neutron and a photon-to-electron conversion efficiency (quantum efficiency) of 15%? Would this charge be detectable if you use an Electrometer2 that...
- a. Power of the sun is about 3.85 x 1026 W. Assume all of the...
- a. Power of the sun is about 3.85 x 1026 W. Assume all of the energy is emitted at the average wavelength of about 450 nm, how many photons per second does it produce? b. Light spectrum of sun emits max power is about 450 nm.   Use this info to determine the approximate temperature of the sun.   c. Vertically polarized light of intensity 100 W/m2 strikes a polarizing filter with its axis tilted 30° clockwise from vertical.  What is the...
The work function of a surface determines the minimum ______________ of light which will cause electrons...
The work function of a surface determines the minimum ______________ of light which will cause electrons to be emitted. A: wavelength B: frequency C: intensity Visible light has wavelengths ranging from about 400 nm at the violet/blue end of the spectrum up to about 700 nm at the red end of the spectrum. If two sources emit the same number of photons per second, one near the red end of the spectrum will emit ________________ one near the blue end....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT