Question

Be sure to answer all parts. The reaction 2A → B is second order in A...

Be sure to answer all parts. The reaction 2A → B is second order in A with a rate constant of 27.9 M−1 · s−1 at 25°C. (a) Starting with [A]0 = 0.00737 M, how long will it take for the concentration of A to drop to 0.00180 M? s (b) Calculate the half-life of the reaction for [A]0 = 0.00737M. s (c) Calculate the half-life of the reaction for [A]0 = 0.00207 M. s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following is known about the reaction below: Chemical reaction: 2A-->2B The order of A is...
The following is known about the reaction below: Chemical reaction: 2A-->2B The order of A is second order If you start out with 2.75 M of A, after 5 minutes you will have 2.00M From these facts, determine: a) the rate law constant, K b) the first half life c) from time 0, how long will it take to reach 25% of the original concentration of A d) what is the concentration of A after 10 minutes?
2A → B + C The above reaction is run and found to follow second order...
2A → B + C The above reaction is run and found to follow second order kinetics with a rate constant of 1.30 x 10-3 M-1sec-1. If the initial concentration of A is 1.45 M, what is the concentration after 142 seconds?
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products) has a rate constant of 4.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A],...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products ) has a rate constant of 5.10×10−3 s−1 at 45 ∘C . How many minutes does it take for the concentration of the...
Enter your answer in the provided box. The reaction 2A → B is first order in...
Enter your answer in the provided box. The reaction 2A → B is first order in A with a rate constant of 2.8 × 10−2 s−1 at 80°C. How long (in seconds) will it take for A to decrease from 0.900 M to 0.130 M?
1.) 2A → B + C The above reaction is run and found to follow second...
1.) 2A → B + C The above reaction is run and found to follow second order kinetics with a rate constant of 1.30 x 10-3 M-1sec-1. If the initial concentration of A is 1.33 M, what is the concentration after 164 seconds? 2.) 2A → B + C Two trials of the above reaction are run with the same initial concentration of A. The first trial is performed at 25oC and the second at 35oC. If the rate constant...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Part B : A certain second-order reaction (B→products) has a rate constant of 1.10×10−3M−1⋅s−1 at 27 ∘C and an initial half-life of 278 s . What is the concentration of the reactant B after one half-life?
A certain second-order reaction (B→products) has a rate constant of 1.60×10−3 M−1⋅s−1 at 27 ∘C and...
A certain second-order reaction (B→products) has a rate constant of 1.60×10−3 M−1⋅s−1 at 27 ∘C and an initial half-life of 296 s . What is the concentration of the reactant B after one half-life?
A) 2A → B + C The above reaction is run and found to follow first...
A) 2A → B + C The above reaction is run and found to follow first order kinetics with a rate constant of 1.30 x 10-3 sec-1. If the initial concentration of A is 1.72 M, what is the concentration after 152 seconds? B) 2A → B + C The above reaction is run and found to follow second order kinetics with a rate constant of 1.30 x 10-3 M-1sec-1. If the initial concentration of A is 1.66 M, what...
PLEASE MAKE SURE YOUR ANSWERS ARE CORRECT Part A What is the half-life of a first-order...
PLEASE MAKE SURE YOUR ANSWERS ARE CORRECT Part A What is the half-life of a first-order reaction with a rate constant of 7.60×10−4  s−1? Express your answer with the appropriate units. Part B A certain first-order reaction has a rate constant of 1.50×10−3 s−1. How long will it take for the reactant concentration to drop to 18 of its initial value? Express your answer with the appropriate units.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT