Question

Dissolving 4.93 g of CaCl2 in enough water to make 311 mL of solution causes the...

Dissolving 4.93 g of CaCl2 in enough water to make 311 mL of solution causes the temperature of the solution to increase by 3.59 oC. Assume the specific heat of the solution and density of the solution are the same as water′s (about 4.18 J/goC and 1.00 g/cm3, respectively) Calculate ΔH per mole of CaCl2 (in kJ) for the reaction under the above conditions.

Hint given in feedback

Aside, the ΔH per mole for dilution depends on the process. For example, more energy is released when starting with a large volume of water (infinite dilution), than when starting with a small volume of water. Why do you think this happens?
Find the heat released per gram and convert to per mole using the MM. Is the process exothermic? If, yes, then what is the sign for ΔH?

Homework Answers

Answer #1

volume of solution = 311 ml

denisty of solution = 1 g/ml

mass of solution = density x volume

                            = 311 g

specific heat = 4.184 J/goC

temperature increase = 3.59 oC

heat Q = m Cp dT

            = 311 x 4.18 x 3.59

           = 4667 J

moles of CaCl2 = 4.93 / 110.98 = 0.0444

H = - Q / n

       = - 4667 / 0.0444

       = 105112.6 J/mol

H = - 105.1 kJ/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When 40.0 g of NaOH is added to water to make 550.0 g of solution, the...
When 40.0 g of NaOH is added to water to make 550.0 g of solution, the temperature increases from 22.0 oC to 41.3 oC. What is the heat of solution for sodium hydroxide per mole? Assume the specific heat capacity for the solution is 4.18 J/goC.
Dissolving 3.00 g of CaCl2(s) in 200.0 g of water in a calorimeter at 22.4 °C...
Dissolving 3.00 g of CaCl2(s) in 200.0 g of water in a calorimeter at 22.4 °C causes the temperature to rise to 25.8 °C. What is the approximate amount of heat involved in the dissolution, assuming the heat capacity of the resulting solution is 4.18 J/g °C? Is the reaction exothermic or endothermic?
When 0.133 g of CaCl2 is dissolved in 100.g of water the temperature of the solution...
When 0.133 g of CaCl2 is dissolved in 100.g of water the temperature of the solution increases by 5.50 °C. How much heat released (q) upon dissolution? What is the H for this reaction? What is the difference between q and H? (the specific heat of the solution is 4.18 J/g°C)
14. Determine the molarity of a solution made by dissolving 1.21 moles of CaCl2 in enough...
14. Determine the molarity of a solution made by dissolving 1.21 moles of CaCl2 in enough water to make 250.0 mL of solution. (___M CaCl2 15. Determine the molarity of a solution made by dissolving 34.3 g of Sr(ClO3)2 in enough water to make 250.0 mL of solution. (___ M Sr(ClO3)2 16. Determine the volume (in mL) of a 1.62 M solution of ZnBr2 that contains 0.299 moles of ZnBr2. (____ mL) 17. Determine the mass of solute (in g)...
A solution is prepared by dissolving 29.0 g of glucose (C6H12O6) in 360 g of water....
A solution is prepared by dissolving 29.0 g of glucose (C6H12O6) in 360 g of water. The final volume of the solution is 382 mL . For this solution, calculate each of the following. A. Mole Fraction B. Mole Percent
A solution is prepared by dissolving 20.2 mL of methanol in 100.0 mL of water. The...
A solution is prepared by dissolving 20.2 mL of methanol in 100.0 mL of water. The final volume of this solution is 118ml. The densities of methanol and water are 0.782 g/mL and 1.00 g/mL, respectively. For this solution, calculate the following- molarity molality mass % MOLE FRACTION VOLUME OF SOLVENT MASS OF SOLVENT MOLES OF SOLVENT VOLUME OF SOLUTE MOLES OF SOLUTE MASS OF SOLUTE VOLUME OF SOLUTION MASS OF SOLUTION
A solution is made by dissolving 54.0 g of silver nitrate in enough water to make...
A solution is made by dissolving 54.0 g of silver nitrate in enough water to make 350.0 mL. A 10.00 mL portion of this solution is then diluted to a final volume of 250.0 mL. What is the TOTAL concentration of ions present in the final solution? 0.908 M 1.82 M 0.0122 M 0.0726 M 0.0363 M
A calorimeter contains 30.0 mL of water at 11.5 ∘C . When 2.10 g of X...
A calorimeter contains 30.0 mL of water at 11.5 ∘C . When 2.10 g of X (a substance with a molar mass of 42.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 17.0 mL of water at 11.5 ∘C . When 1.60 g of X...
A calorimeter contains 17.0 mL of water at 11.5 ∘C . When 1.60 g of X (a substance with a molar mass of 79.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 35.0 mL of water at 15.0 ∘C . When 1.70 g of X...
A calorimeter contains 35.0 mL of water at 15.0 ∘C . When 1.70 g of X (a substance with a molar mass of 76.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 25.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT