Question

Calculate the heat energy released when 19.6 g of liquid mercury at 25.00 °C is converted...

Calculate the heat energy released when 19.6 g of liquid mercury at 25.00 °C is converted to solid mercury at its melting point. Answer in KJ

Homework Answers

Answer #1

eat capacity for Hg(l) = 28j/mole-K
melting point            = 234.32K
enthalpy of fusion       = 2.29kj/mole
atomic mass of Hg = 200.6g/mole
no of moles of Hg = 19.6/200 = 0.098 moles
234.32K liquid to 25C(298K) liquid
Q = 0.098*28*(298-234.32)
= 0.098*28*63.68
= 174.75j
234.32K liquid to 234.32K solid
Q = 0.098*2.29
= 0.22344kj/mole
total heat energy = 0.17475+0.22344
                  = 0.39819 kj >>>> answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the heat energy released when 29.9 g of liquid mercury at 25.00 °C is converted...
Calculate the heat energy released when 29.9 g of liquid mercury at 25.00 °C is converted to solid mercury at its melting point. Constants for mercury at 1 atm answer in kJ
Calculate the heat energy released when 23.2 g of liquid mercury at 25.00 °C is converted...
Calculate the heat energy released when 23.2 g of liquid mercury at 25.00 °C is converted to solid mercury at its melting point.
Calculate the heat energy released when 16.3 g of liquid mercury at 25.00 C is converted...
Calculate the heat energy released when 16.3 g of liquid mercury at 25.00 C is converted to solid mercury at its melting point
Calculate the heat energy released when 16.9 g of liquid mercury at 25.00 °C is converted...
Calculate the heat energy released when 16.9 g of liquid mercury at 25.00 °C is converted to solid mercury at its melting point.
1. Calculate the heat energy released when 19.1 g of liquid mercury at 25.00 °C is...
1. Calculate the heat energy released when 19.1 g of liquid mercury at 25.00 °C is converted to solid mercury at its melting point. 2. A certain liquid has a vapor pressure of 92.0 Torr at 23.0 ∘C and 349.0 Torr at 45.0 ∘C. Calculate the normal boiling point of this liquid. 3.At 1 atm, how much energy is required to heat 45.0 g H2O(s) at −22.0 ∘C to H2O(g) at 151.0 ∘C?
Constants for mercury at 1 atm heat capacity of Hg(l) 28.0 J/(mol·K) melting point 234.32 K...
Constants for mercury at 1 atm heat capacity of Hg(l) 28.0 J/(mol·K) melting point 234.32 K enthalpy of fusion 2.29 kJ/mol Calculate the heat energy released when 12.0 g of liquid mercury at 25.00° C is converted to solid mercury at its melting point. Energy: ?KJ
How much heat energy is required to convert 21.1 g of solid ethanol at -114.5 °C...
How much heat energy is required to convert 21.1 g of solid ethanol at -114.5 °C to gaseous ethanol at 191.5 °C? The molar heat of fusion of ethanol is 4.60 kJ/mol and its molar heat of vaporization is 38.56 kJ/mol. Ethanol has a normal melting point of -114.5 °C and a normal boiling point of 78.4 °C. The specific heat capacity of liquid ethanol is 2.45 J/g·°C and that of gaseous ethanol is 1.43 J/g·°C. ________kJ
How much heat energy is required to convert 81.5 g of solid ethanol at -114.5 °C...
How much heat energy is required to convert 81.5 g of solid ethanol at -114.5 °C to gasesous ethanol at 194.1 °C? The molar heat of fusion of ethanol is 4.60 kJ/mol and its molar heat of vaporization is 38.56 kJ/mol. Ethanol has a normal melting point of -114.5 °C and a normal boiling point of 78.4 °C. The specific heat capacity of liquid ethanol is 2.45 J/g·°C and that of gaseous ethanol is 1.43 J/g·°C.
How much heat energy is required to convert 32.1 g of solid iron at 26 °C...
How much heat energy is required to convert 32.1 g of solid iron at 26 °C to liquid iron at 1538 °C? The molar heat of fusion of iron is 13.8 kJ/mol. Iron has a normal melting point of 1538 °C. The specific heat capacity of solid iron is 0.449 J/g·°C.
A piece of solid antimony weighing 34.3 g at a temperature of 618 °C is placed...
A piece of solid antimony weighing 34.3 g at a temperature of 618 °C is placed in 343 g of liquid antimony at a temperature of 754 °C. After a while, the solid melts and a completely liquid sample remains. Calculate the temperature after thermal equilibrium is reached, assuming no heat loss to the surroundings. The enthalpy of fusion of solid antimony is ΔHfus = 19.6 kJ/mol at its melting point of 631 °C, and the molar heat capacities for...