Question

Consider the fructose-1,6-bisphosphatase reaction. Calculate the free energy change if the ratio of the concentrations of...

Consider the fructose-1,6-bisphosphatase reaction. Calculate the free energy change if the ratio of the concentrations of the products to the concentrations of the reactants is 21.3, and the temperature is 37.0 °C? ΔG°\' for the reaction is –16.7 kJ/mol. The constant R = 8.3145 J/(mol·K)

Homework Answers

Answer #1

For any reaction,

Q=ratio of concentration of product to reactants=[products]/[reactants]

G=Go+ RT ln Q

T=37C=273+37=310K

Also, Go=-16.7 kj/mol

G=Go+ RT ln Q=-16.7kj/mol+RTlnQ=-16.7 kj/mol+ (8.3145 J/K mol)(310K) ln (21.3)=-16.7kj/mol+7883.80J/mol=-16.7kj/mol+7.883kj/mol=-8.817 kj/mol(answer)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The enzyme phosphofructokinase-1 catalyzes the reaction Fructose-6-P + ATP  Fructose-1,6-bisphosphate + ADP. The ΔG’0 of...
The enzyme phosphofructokinase-1 catalyzes the reaction Fructose-6-P + ATP  Fructose-1,6-bisphosphate + ADP. The ΔG’0 of this reaction is -14.2 kJ/mol. Assume the following concentrations of substrates and products: Fructose-6-P, 1 mM. ATP, 2 mM. Fructose-1,6-bisphosphate, 0.5 mM. ADP, 0.5 mM. Assume the reaction takes place at 37 ºC. Calculate ΔG for this reaction
Question 1: The reaction for the cleavage of fructose 1,6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate...
Question 1: The reaction for the cleavage of fructose 1,6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate is catalyzed by the enzyme fructose 1,6-bisphosphate aldolase and has a standard free energy change of ΔG°′ = +23.8 kJ/mol. A. What is the Keq of the reaction at 37 oC? (R = 8.314 J/°mol)? B. If the intracellular concentration of fructose 1,6-bisphosphate at equilibrium (ΔG = 0) was 10 mM, what would be the predicted concentration of the products? C. In cells, the...
Consider the malate dehydrogenase reaction from the citric acid cycle. Given the following concentrations, calculate the...
Consider the malate dehydrogenase reaction from the citric acid cycle. Given the following concentrations, calculate the free energy change for this reaction at 37.0 °C (310 K). ΔG°\' for the reaction is 29.7 kJ/mol. Assume that the reaction occurs at pH 7. [malate] = 1.15 mM [oxaloacetate] = 0.140 mM [NAD ] = 170 mM [NADH] = 68 mM
Consider the malate dehydrogenase reaction from the citric acid cycle. Given the following concentrations, calculate the...
Consider the malate dehydrogenase reaction from the citric acid cycle. Given the following concentrations, calculate the free energy change for this reaction at 37.0 °C (310 K). ΔG°\' for the reaction is 29.7 kJ/mol. Assume that the reaction occurs at pH 7. [malate] = 1.53 mM [oxaloacetate] = 0.260 mM [NAD ] = 250 mM [NADH] = 1.0 × 102 mM
Consider the malate dehydrogenase reaction from the citric acid cycle. Given the following concentrations, calculate the...
Consider the malate dehydrogenase reaction from the citric acid cycle. Given the following concentrations, calculate the free energy change for this reaction at 37.0 °C (310 K). ΔG°\' for the reaction is 29.7 kJ/mol. Assume that the reaction occurs at pH 7. [malate] = 1.33 mM [oxaloacetate] = 0.190 mM [NAD ] = 270 mM [NADH] = 110 mM
1.      Calculate the standard free energy change at 500 K for the following reaction. Cu(s) +...
1.      Calculate the standard free energy change at 500 K for the following reaction. Cu(s) + H2O(g) à CuO(s) + H2(g) ΔH˚f (kJ/mol) S˚ (J/mol·K) Cu(s)    0    33.3    H2O(g)    -241.8    188.7    CuO(s)    -155.2    43.5    H2(g)     0    130.6 2.      When solid ammonium nitrate dissolves in water, the resulting solution becomes cold. Which is true and why? a.      ΔH˚ is positive and ΔS˚ is positive b.      ΔH˚ is positive and ΔS˚...
The value of ?G°\' for the conversion of glucose-6-phosphate to fructose-6-phosphate (F6P) is 1.67 kJ/mol. If...
The value of ?G°\' for the conversion of glucose-6-phosphate to fructose-6-phosphate (F6P) is 1.67 kJ/mol. If the concentration of glucose-6-phosphate at equilibrium is 2.45 mM, what is the concentration of fructose-6-phosphate? Assume a temperature of 25.0 °C. The constant R = 8.3145 J/(mol·K)
he thermodynamic properties for a reaction are related by the equation that defines the standard free...
he thermodynamic properties for a reaction are related by the equation that defines the standard free energy, ΔG∘, in kJ/mol: ΔG∘=ΔH∘−TΔS∘ where ΔH∘ is the standard enthalpy change in kJ/mol and ΔS∘ is the standard entropy change in J/(mol⋅K). A good approximation of the free energy change at other temperatures, ΔGT, can also be obtained by utilizing this equation and assuming enthalpy (ΔH∘) and entropy (ΔS∘) change little with temperature. Part A For the reaction of oxygen and nitrogen to...
The ratio of an enzyme catalyzed reaction rate to the uncatalyzed rate (i.e. kcat / kuncat)...
The ratio of an enzyme catalyzed reaction rate to the uncatalyzed rate (i.e. kcat / kuncat) is equal to 10,000. Compute the amount, in kj/mol, by which the activation energy for the reaction is lowered by the enzyme. Assume the free energy of the reactants is the same in both cases. The temperature is 300 K and the gas constant R is 8.314 J / (mol K).
The equilibrium constant of a system, K, can be related to the standard free energy change,...
The equilibrium constant of a system, K, can be related to the standard free energy change, ΔG∘, using the following equation: ΔG∘=−RTlnK where T is a specified temperature in kelvins (usually 298 K) and R is equal to 8.314 J/(K⋅mol). Under conditions other than standard state, the following equation applies: ΔG=ΔG∘+RTlnQ In this equation, Q is the reaction quotient and is defined the same manner as K except that the concentrations or pressures used are not necessarily the equilibrium values....