Question

A mercury atom is initially in its lowest possible (or ground state) energy level. The atom...

A mercury atom is initially in its lowest possible (or ground state) energy level. The atom absorbs a photon with a wavelength of 185 nm and then emits a photon with a frequency of 4.924 x 10^14 Hz. At the end of this series of transitions, the atom will still be in an energy level above the ground state. Draw an energy-level diagram for this process and find the energy of this resulting excited state, assuming that we assign a value of E = 0 to the ground state.

Homework Answers

Answer #1

Energy of photon absorbed by atom = hc/l

with,

h = planck's constant

c = speed of light

l = 185 nm = 185 x 10^-9 m

we get,

Energy[1] = 6.626 x 10^-34 x 3 x 10^8/185 x 10^-9 = 1.074 x 10^-18 J

Now,

energy of photon emitted = hv

with,

v = 4.924 x 10^14 Hz

we get,

Energy[2] = 6.626 x 10^-34 x 4.924 x 10^14 = 3.26 x 10^-19 J

energy of excited state = Energy[1] - Energy[2] = 7.48 x 10^-19 J

a representative diagram is shown below,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm....
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm. What energy level does the electron reach? b) This excited atom then emits a photon of wavelength 1875.4 nm. What energy level does the electron fall to?
A hydrogen atom is initially at the ground state and then absorbs energy 13.06 eV. The...
A hydrogen atom is initially at the ground state and then absorbs energy 13.06 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Answer: (number) ___________ (b) Calculate the longest wavelength emitted. Answer: _________
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy...
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy level does the electron reach? This excited atom then emits a photon of wavelength 434.1 nm. What energy level does the electron fall to? -I know this question has already been asked on Chegg but each question I go to has different calculations and I can't get the right answer.
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Calculate the second shortest wavelength emitted.
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.55 eV. The...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.55 eV. The excited state is unstable, and it tends to finally return to its ground state. (a) How many possible wavelengths will be emitted as the atom returns to its ground state? draw a diagram of energy levels to illustrate answer     Answer: (number) ________    (b) Calculate the shortest wavelength emitted.        Answer: ________
The hydrogen atom, changing from its first excited state to its lowest energy state, emits light...
The hydrogen atom, changing from its first excited state to its lowest energy state, emits light with a wavelength of 122 nm. That is in the far ultraviolet. The sodium atom, which like hydrogen has one electron that gets excited outside a core of 10 other electrons, emits light at 589 nm making a similar transition from its first excited state to its lowest state. Which of these statements would be true about the sodium and hydrogen atoms and their...
A ground-state H atom absorbs a photon of wavelength 92.62 nm. What higher energy level did...
A ground-state H atom absorbs a photon of wavelength 92.62 nm. What higher energy level did the electron reach?
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to...
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to the n = 6 excited state. The atom returns to the ground state by emitting two photons, one in dropping to n = 5 state, and one in further dropping to the ground state. What are the photon wavelengths of (a) the first and (b) the second transitions?
In the mercury atom, an electron is in the Ec energy level. Two photons are incident...
In the mercury atom, an electron is in the Ec energy level. Two photons are incident upon the electron. Photon 1 has a frequency of 5.28E14 Hz, and Photon 2 has a frequency of 4.37E14 Hz. a. Calculate which photon will be absorbed, and calculate the new energy level of the electron. Photon # (blank) will be absorbed. The new energy level is (blank). b. Calculate all the possible photon frequencies that the electron can emit to get back down...
A triply ionized beryllium atom is in the ground state. It absorbs energy and makes a...
A triply ionized beryllium atom is in the ground state. It absorbs energy and makes a transition to the n = 7 excited state. The ion returns to the ground state by emitting SIX photons ONLY. What is the wavelength of the second highest energy photon?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT