Question

A mercury atom is initially in its lowest possible (or ground state) energy level. The atom...

A mercury atom is initially in its lowest possible (or ground state) energy level. The atom absorbs a photon with a wavelength of 185 nm and then emits a photon with a frequency of 4.924 x 10^14 Hz. At the end of this series of transitions, the atom will still be in an energy level above the ground state. Draw an energy-level diagram for this process and find the energy of this resulting excited state, assuming that we assign a value of E = 0 to the ground state.

Homework Answers

Answer #1

Energy of photon absorbed by atom = hc/l

with,

h = planck's constant

c = speed of light

l = 185 nm = 185 x 10^-9 m

we get,

Energy[1] = 6.626 x 10^-34 x 3 x 10^8/185 x 10^-9 = 1.074 x 10^-18 J

Now,

energy of photon emitted = hv

with,

v = 4.924 x 10^14 Hz

we get,

Energy[2] = 6.626 x 10^-34 x 4.924 x 10^14 = 3.26 x 10^-19 J

energy of excited state = Energy[1] - Energy[2] = 7.48 x 10^-19 J

a representative diagram is shown below,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm....
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm. What energy level does the electron reach? b) This excited atom then emits a photon of wavelength 1875.4 nm. What energy level does the electron fall to?
A hydrogen atom is initially at the ground state and then absorbs energy 13.06 eV. The...
A hydrogen atom is initially at the ground state and then absorbs energy 13.06 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Answer: (number) ___________ (b) Calculate the longest wavelength emitted. Answer: _________
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy...
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy level does the electron reach? This excited atom then emits a photon of wavelength 434.1 nm. What energy level does the electron fall to? -I know this question has already been asked on Chegg but each question I go to has different calculations and I can't get the right answer.
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Calculate the second shortest wavelength emitted.
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.55 eV. The...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.55 eV. The excited state is unstable, and it tends to finally return to its ground state. (a) How many possible wavelengths will be emitted as the atom returns to its ground state? draw a diagram of energy levels to illustrate answer     Answer: (number) ________    (b) Calculate the shortest wavelength emitted.        Answer: ________
A ground-state H atom absorbs a photon of wavelength 92.62 nm. What higher energy level did...
A ground-state H atom absorbs a photon of wavelength 92.62 nm. What higher energy level did the electron reach?
In the mercury atom, an electron is in the Ec energy level. Two photons are incident...
In the mercury atom, an electron is in the Ec energy level. Two photons are incident upon the electron. Photon 1 has a frequency of 5.28E14 Hz, and Photon 2 has a frequency of 4.37E14 Hz. a. Calculate which photon will be absorbed, and calculate the new energy level of the electron. Photon # (blank) will be absorbed. The new energy level is (blank). b. Calculate all the possible photon frequencies that the electron can emit to get back down...
A triply ionized beryllium atom is in the ground state. It absorbs energy and makes a...
A triply ionized beryllium atom is in the ground state. It absorbs energy and makes a transition to the n = 7 excited state. The ion returns to the ground state by emitting SIX photons ONLY. What is the wavelength of the second highest energy photon?
A quantum-mechanical system initially in its ground level absorbs a photon and ends up in the...
A quantum-mechanical system initially in its ground level absorbs a photon and ends up in the first excited state. The system then absorbs a second photon and ends up in the second excited state. For which of the following systems does the second photon have a longer wavelength than the first one? (a) a harmonic oscillator; (b) a hydrogen atom; (c) a particle in a box. Briefly motivate your answer.
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?