Question

When 60.0 mL of a 0.400 M solution of HNO3 is combined with 60.0 mL of...

When 60.0 mL of a 0.400 M solution of HNO3 is combined with 60.0 mL of a 0.400 M solution of NaOH in the calorimeter described in question #1, the final temperature of the solution is measured to be 26.6 ˚C. The initial temperature of the solutions is 24.0 ˚C. Assuming the specific heat capacity of the final solution is 3.90 J·g–1 ·˚C–1 and the density of the final solution is 1.04 g/mL, calculate qrxn. Hint: start with qrxn + qsoln + qcal = 0. HNO3(aq) + NaOH(aq) → H2O(l) + NaNO3(aq)

Homework Answers

Answer #1

I am assuming calorimeter doesn't absorb any heat.
qrxn + qsoln + qcal = 0 becomes,
qrxn + qsoln = 0
qrxn = -qsoln

qsoln = m*C*delta T
m = density * volume of solution
    = 1.04 g/mL * (60 + 60) mL
    = 124.8 g

qsoln = m*C*delta T
   = 124.8 * 3.9* ( 26.6 - 24)
   =1265.5 J

qrxn = -qsoln
    = -1265.5 J

Number of moles of acid or base reacted are equal
Number of moles, n = M * V = 0.4 M * 0.06 L = 0.024 mol

In J/mol, qrxn can be written as,
qrxn = - 1265.5 J / 0.024 mol
          = -52729 J/mol
          = -52.729 KJ/mol
Answer: -52.729 KJ/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 100 mL sample of 0.300 M NaOH is mixed with a 100 mL sample of...
A 100 mL sample of 0.300 M NaOH is mixed with a 100 mL sample of 0.300 M HNO3 in a coffee cup calorimeter. The two substances react according to the following chemical equation: NaOH(aq) + HNO3(aq) → NaNO3(aq) + H2O(l) Both solutions were initially at 35.0 °C. The temperature of the solution after reaction was 37.0 °C. Estimate the ΔHrxn (in kJ/mol NaOH). Assume: i) no heat is lost to the calorimeter or the surroundings; and ii) the density...
The enthalpy of neutralization for the reaction of HNO3 with KOH is given below. HNO3 (aq)...
The enthalpy of neutralization for the reaction of HNO3 with KOH is given below. HNO3 (aq) + KOH (aq) → H2O (l) + KNO3 (aq) ΔH = -57.0 kJ 102.4 ml of 0.662 M HNO3 is combined with 102.4 ml of 0.662 M KOH in a coffee cup calorimeter. Both of the starting solutions were initially at a temperature of 30.64 °C. The density of each solution is 1.00 g/ml. Calculate the final temperature of the solution in the calorimeter...
When a solutions of NaI and AgNO3 are combined, solid silver iodide is produced accroding to...
When a solutions of NaI and AgNO3 are combined, solid silver iodide is produced accroding to the reaction below. NaI (aq) + AgNO3 (aq) → AgI (s) + NaNO3 (aq)             ΔH = ? 102.8 ml of 0.634 M NaI are combined with 102.8 ml of 0.634 M AgNO3 in a perfect calorimeter. Both of the starting solutions were initially at a temperature of 33.63 °C. After the reaction is complete the final temperature of the solution in the calorimeter is...
25.0 mL of a 0.50 M solution of acid HA was combined with 25.0 mL of...
25.0 mL of a 0.50 M solution of acid HA was combined with 25.0 mL of a 0.50 solution of base MOH in a calorimeter with a calorimeter constant of 13.5 J/C. The initial temperature of the solution was 23.3 C and the maximum temperature was 34.7 C. The resulting solution had a specific heat capacity of 3.92 J/g·C and a density of 1.04 g/mL. Calculate each of the following a) The mass of the resulting solution. b) The heat...
In a constant-pressure calorimeter, 60.0 mL of 0.780 M H2SO4 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.780 M H2SO4 was added to 60.0 mL of 0.490 M NaOH. The reaction caused the temperature of the solution to rise from 23.53 °C to 26.87 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 60.0 mL of 0.760 M H2SO4 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.760 M H2SO4 was added to 60.0 mL of 0.500 M NaOH. The reaction caused the temperature of the solution to rise from 23.05 °C to 26.46 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes. I am stuck on...
300 mL of a 0.694 M HCl aqueous solution is mixed with 300 mL of 0.347...
300 mL of a 0.694 M HCl aqueous solution is mixed with 300 mL of 0.347 M Ba(OH)2 aqueous solution in a coffee-cup calorimeter. Both the solutions have an initial temperature of 28.7 °C. Calculate the final temperature of the resulting solution, given the following information: H+(aq) + OH- (aq) → H2O(ℓ)       ΔHrxn = -56.2 kJ/mol Assume that volumes can be added, that the density of the solution is the same as that of water (1.00 g/mL), and the specific...
A 50.0 mL sample of 0.300 M NaOH is mixed with a 50.0 mL sample of...
A 50.0 mL sample of 0.300 M NaOH is mixed with a 50.0 mL sample of 0.300 M HNO3 in a coffee cup calorimeter. If both solutions were initially at 35.00°C and the temperature of the resulting solution was recorded as 37.00°C, determine the ΔH°rxn (in units of kJ/mol NaOH) for the neutralization reaction between aqueous NaOH and HCl. Assume 1) that no heat is lost to the calorimeter or the surroundings, and 2) that the density and the heat...
Calculate qrxn for the reaction that occurs when 25.0 mL of 1.00 M HCl are added...
Calculate qrxn for the reaction that occurs when 25.0 mL of 1.00 M HCl are added to 25.0 mL of 1.00 M NaOH in a coffee-cup calorimeter at room temperature (25.0o C). The final temperature of the solution was 31.4o C. Assume that the density of the solution is 1.00 g/mL and that Cs,soln is 4.18 J/g.o C.
What is the molarity of an HCl solution if 13.0 mL HCl solution is titrated with...
What is the molarity of an HCl solution if 13.0 mL HCl solution is titrated with 26.6 mL of 0.175 M NaOH solution? HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)