Question

1. Consider two perfect gases at low pressure, A and B. A and B have different...

1. Consider two perfect gases at low pressure, A and B. A and B have different chemical identities, but the number of moles of the two gases is the same. Would a plot of the V/T isobar be different for the two gases? If so, explain how the plots would differ. If not, explain why

2. Calculate the molar volume of a perfect gas at STP and SATP

Homework Answers

Answer #1

1) The plot, V vs T at constant pressure, for two equi molar gases is not same. Because the density of the two different gases is not same. By inceasing the rempartaure the volume of the gas increases, leading to decrease in its density. Therefore the graph between V and T at constant temperature for two different gases is not same.

2) STP stands for standard temperature and pressure, i.e. T = 273.15 K or 0 oC, P = 1 atm

the perfect or ideal molar gas equation is PV = RT, R is a gas constant having a value 0.0821 lit. atm. K-1. mol-1

molar volume (V) = RT/P = (0.0821*273.15)/1 = 22.42 lit.

SATP stands for standard ambient temperature and pressure, i.e. T = 298.15 K or 25 oC, P = 1 atm

molar volume (V) = RT/P = (0.0821*298.15)/1 = 22.478 lit.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. What is the equation of state for a perfect gas at low pressure? 2. Under...
1. What is the equation of state for a perfect gas at low pressure? 2. Under which conditions are Boyle's law, Charles' law, and Avogadro's principle valid? 3. Consider two perfect gases at low pressure, A and B. A and B have different chemical identities, but the number of moles of the two gases is the same. Would a plot of the pV isotherm at T=298K be different for the two gases? If so, explain how the plots would differ....
Consider the following processes (treat all gases as ideal). I. The pressure of 1 mole of...
Consider the following processes (treat all gases as ideal). I. The pressure of 1 mole of oxygen gas is allowed to double at constant temperature. II. Carbon dioxide is allowed to expand at constant temperature to 10 times its original volume. III. The temperature of 1 mol of helium is increased 25 degrees C at constant pressure. IV. Nitrogen gas is compressed at constant temperature to half its original volume. V. A glass of water loses 100 J of energy...
Two different gases A and B are mixed. Calculate change of entropy. a) Assume pressure and...
Two different gases A and B are mixed. Calculate change of entropy. a) Assume pressure and temperature of A and B are the same. b) Now assume pressure and temperature of A and B are different. The system is thermally isolated. Calculate entropy and final temperature, Tf.
Consider the Ideal Gas Law, which states that PV = nRT, where P is the pressure,...
Consider the Ideal Gas Law, which states that PV = nRT, where P is the pressure, V is the volume, T is the temperature, and n is the number of moles of a gas sample, and R is a constant. (a) Assume a sample of 1 mole of a gas is in a expandable container where temperature and pressure are allowed to vary. Solve this equation for V = f(P,T). (b) Determine ∂V/dP and interpret the result. In particular, describe...
Which of the following statements are true? A.The number of moles in 1.00 atm of gas...
Which of the following statements are true? A.The number of moles in 1.00 atm of gas was the same, despite the fact that the gases themselves had different identities. B.The number of moles in 1.00 atm of gas varied linearly with increasing molar mass. C.The volume of the gas varied depending on the identity of the gas. D.The number of moles in 1.00 atm of gas varied hyperbolically with increasing molar mass. Given Avogadro's Law, which of the following statements...
2. p1V1γ= p2V2γ is only correct when (a) a perfect gas undergoes an adiabatic process.        (b)...
2. p1V1γ= p2V2γ is only correct when (a) a perfect gas undergoes an adiabatic process.        (b) a perfect gas undergoes a reversible process. (c) a perfect gas undergoes a reversible adiabatic process.     (d) a real gas undergoes a reversible adiabatic process.      4. If a simple (meaning one-component, single phase) and homogeneous closed system undergoes an isobaric change with expansion work only, how Gibbs free energy varies with temperature?      (a) (G/T)p> 0        (b) (G/T)p< 0      (c) (G/T)p= 0        (d) Depending on...
± Stoichiometric Relationships with Gases The ideal gas law PV=nRT relates pressure P, volume V, temperature...
± Stoichiometric Relationships with Gases The ideal gas law PV=nRT relates pressure P, volume V, temperature T, and number of moles of a gas, n. The gas constant Requals 0.08206 L⋅atm/(K⋅mol) or 8.3145 J/(K⋅mol). The equation can be rearranged as follows to solve for n: n=PVRT This equation is useful when dealing with gaseous reactions because stoichiometric calculations involve mole ratios. Part A When heated, calcium carbonate decomposes to yield calcium oxide and carbon dioxide gas via the reaction CaCO3(s)→CaO(s)+CO2(g)...
1 moles of an ideal gas are in equilibrium at fixed pressure (e.g. 106 Pa) and...
1 moles of an ideal gas are in equilibrium at fixed pressure (e.g. 106 Pa) and temperature (e.g. 300 K). 3) The two key features of an ideal gas are: A) U depends only on N and T, not V. B) The V dependence of S is given by a term Nk*ln(V) For a gas that obeys (A) but has some excluded volume so S goes as Nkln(V-Nb), with b=10-28 m3, find the equilibrium volume V. All other conditions are...
1. You have two identical containers, one containing gas A and the other containing gas B....
1. You have two identical containers, one containing gas A and the other containing gas B. Both gases are under the same pressure and are at 5.0 ?C. The molecular masses are mA = 3.29 × 10?27 kg and mB = 6.12 × 10?26 kg. (a) (1 point) Which gas has greater translational kinetic energy per molecule? (b) (1 point) Which gas has greater rms speed? (c) (1 point) Assuming you can only change one of the containers, the temperature...
Chapter 5- Gases 24. As weather balloons rise from the earth's surface, the pressure of th...
Chapter 5- Gases 24. As weather balloons rise from the earth's surface, the pressure of th atmosphere becomes less, tending to cause the volume of the balloons to exand. However, the temperature is much lower in the upper atmosphere that at sea level. Would this temperature effect tend to make such a balloon expand or contract? Weather balloons do, in fact, expand as they rise. What does this tell you? 37. Freon-12 (CF2Cl2) is commonly used as the refrigerant in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT