Question

An ideal gas is heated under constant pressure (Pext = 2 bar) from an initial volume...

An ideal gas is heated under constant pressure (Pext = 2 bar) from an initial volume of 1 liter and temperature 250C to a final temperature of 370C. what is the final volume of the gas? how many moles of gas are involved?

Homework Answers

Answer #1

Please note the temperatures (temperature 250C to a final temperature of 370C considered) mentioned.

=====An ideal gas is heated under constant pressure (Pext = 2 bar) from an initial volume of 1 liter and temperature 250C to a final temperature of 370C. what is the final volume of the gas? how many moles of gas are involved?====

At constant pressure, from the gas laws we know,

P1V1/T1 = P1V2/T2,

or V1T2 = V2T1

Where 1 stands for initial and 2 for final,

V1 = 1 L

T1 = 250C = 298 K and T2 = 370C = 310 K

V2 =?

From the above formula, V2= 1*310/298 L = 1.0403 L is the final volume.

Again, from the gas laws, we can write,

PV=nRT

By replacing the initial state values and considering R= 0.082 L atm / mol K

we get, n = 1.97385*1/0.082/298 ( 2 bar = 1.97385 atm) = 0.0808 moles of gas was present.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. 10.0 moles of ideal gas cloud has an initial pressure of 1.00 bar, initial volume...
3. 10.0 moles of ideal gas cloud has an initial pressure of 1.00 bar, initial volume of 100.0L and temperature of 25.0ºC. The cloud expands adiabatically to a final volume of 1000.0L. Cp,m= 20.79 J / mol K (Cp,m is molar heat capacity and constant pressure) a. (10 pts) What is the final pressure of the gas cloud? b. (10 pts) What is the final temperature of the gas cloud? c. (10 pts) What is the change in entropy for...
Consider an ideal gas that occupies 100 dm3 at a pressure of 3.00 bar. If the...
Consider an ideal gas that occupies 100 dm3 at a pressure of 3.00 bar. If the gas is compressed isothermally to a volume of 60 dm3 at a constant pressure of 5.00 bar followed by followed by another isothermal compression to 40 dm3 at a constant pressure of 7.50 bar (Figure 5.4). Compare the result with the work of compressing the gas isothermally and reversibly from 100 dm3 to 40 dm3 . Compare both results to the one obtained in...
One more of an ideal gas initially at 27oC and 1 bar pressure is heated and...
One more of an ideal gas initially at 27oC and 1 bar pressure is heated and allowed to expand reversibly at a constant pressure until the final temperature is 327oC. For this gas, Cv,m = 2.5R, constant over the temperature range. (Note from SRB: Cv,m is the molar heat capacity. An earlier version of the 5th edition that I used last year used Cv with a bar over it, as we have been doing in class. Sorry for any confusion.)....
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3....
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3. The amount of heat added is 5.10 103 J. (a) What is the change in the temperature of the gas? _____K (b) Find the change in its internal energy. _____J (c) Determine the change in pressure. _____Pa
The volume of an ideal gas is adiabatically reduced from 217 L to 65.6 L. The...
The volume of an ideal gas is adiabatically reduced from 217 L to 65.6 L. The initial pressure and temperature are 1.70 atm and 300 K. The final pressure is 9.07 atm. (a) Is the gas monatomic, diatomic, or polyatomic? (b) What is the final temperature? (c) How many moles are in the gas?
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 18.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. 80.99 Correct: Your answer is...
2 moles of perfect gas (ideal gas) Helium filled a 1 liter volume balloon (closed constant...
2 moles of perfect gas (ideal gas) Helium filled a 1 liter volume balloon (closed constant pressure vessel) and was heated at 298 K and 398 K. At the moment when the temperature inside the container reached 398 K, the container was placed in another Vessel of 3000 liter size where the temperature was always maintained at 398 K, and then the container was opened along a reversible path. What is the total amount of heat in and out of...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 24.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. Your response differs from the...
The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L. The...
The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L. The initial pressure and temperature are 1.00 atm and 300 K. The final pressure is 4.00 atm. ? = 8.314 J/mol.K , ????????? = 1.4, ??????????? = 1.67 and 1 atm = 1.013 × 10^5 Pa. mol.K (a) Is the gas monatomic or diatomic? (b) What is the final temperature? (c) How many moles are in the gas?
A gas contained in a closed rigid container is heated from initial temperature and pressure of...
A gas contained in a closed rigid container is heated from initial temperature and pressure of 270C and 2 bar to a final pressure of 12 bar. Calculate final temperature, Work done, Heat transfer and change in Internal Energy. (Take Cv as 0.873 kJ/kg K. and Mass of the gas = 1kg)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT