The vapor pressure of a liquid doubles when the temperature is raised from 78C to 86C. At what temperature will the vapor pressure be four times the value at 78C?
via the clausius clapeyron equation
ln(P1/P2) = (dHvap/R) x (1/T2 - 1/T1)
where..
P1 = P1
P2 = 2 x P1
dHvap = heavt of vaporization
R = gas constant = 8.314 J/molK
T2 = 86+273.15 = 359.15K
T1 = 78+273.15 = 351.15K
rearrange the equation for dHvap
dHvap = R x ln(P1/P2) / (1/T2 - 1/T1)
plug and chug.. .
btw.. notice ln(P1/P2) = ln( P1/(2P1)) = ln(1/2) = ln(1) - ln(2) =
0 - ln(2) = -ln(2)
dHvap= R *(-ln2) /(1/359.15 -1/351.15)
SO,
now
using the same equation again
ln(P1/P2) = (dHvap/R) x (1/T2 - 1/T1)
ln(P1/4*P1) = (-ln2) /(1/359.15 -1/351.15) x (1/T2 - 1/(273.15+78))
-2ln2= (-ln2) *(1/359.15 -1/351.15) x (1/T2 - 1/(273.15+78))
2= 1/(1/359.15 -1/351.15) x (1/T2 - 1/(351.15))
-16/351.15*359.15 = (351.15 -T2 )/ 351.15*T2
-16/359.15= (351.15 -T2 )/ *T2
-16T2 = 359.15*351.15 - 359.15T2
T2 = 367.523
so,final temperature = 94.37C
Get Answers For Free
Most questions answered within 1 hours.