Question

For all of the problems below, here is the reaction: A <=> B. Assume in each...

For all of the problems below, here is the reaction: A <=> B. Assume in each case that the temperature is 300 K. (6.) If the Delta G for the reaction is 8 kJ/mol when there is 0.5M A and 0.2M B, what is the equilibrium concentration of A

Homework Answers

Answer #1

delG = -RT lnK

8*1000=- 8.314* 300* lnK

lnK= -3.21

K= exp(-3.21) =0.04046

for the reaction is A-àB

K= [B]/[A]

Initial

A   0.5 M         and B   0.2M

Let x is the dissociation

At Equilibrium

A 0.5-x    and B 0.2+x

K=( 0.2+x)/(0.5-x)= 0.04046

0.2+x= 0.04046*(0.5-x)

0.2+x= 0.04046*0.5-0.04046x

Therefore x*(1+0.04046)= 0.04046*0.5-0.2

x is giving becoming –ve. The reaction does not proceed in the forward direction.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following reaction. CH3OH(g) CO(g) + 2 H2(g) DELTA-H = +90.7 kJ (a) Is the...
Consider the following reaction. CH3OH(g) CO(g) + 2 H2(g) DELTA-H = +90.7 kJ (a) Is the reaction exothermic or endothermic? (b) Calculate the amount of heat transferred when 45.0 g of CH3OH(g) are decomposed by this reaction at constant pressure. DELTA-H =___ kJ (c) If the enthalpy change is 20.0 kJ, how many grams of hydrogen gas are produced? _____g (d) How many kilojoules of heat are released when 11.5 g of CO(g) reacts completely with H2(g) to form CH3OH(g)...
For the reaction given below, 2.00 moles of A and 3.00 moles of B are placed...
For the reaction given below, 2.00 moles of A and 3.00 moles of B are placed in a 6.00-L container. A(g) + 2B(g) C(g) At equilibrium, the concentration of A is 0.220 mol/L. What is the value of K? (6.90)
Consider the reaction shown below. PbCO3(s) PbO(s) + CO2(g) Calculate the equilibrium pressure of CO2 in...
Consider the reaction shown below. PbCO3(s) PbO(s) + CO2(g) Calculate the equilibrium pressure of CO2 in the system at the following temperatures. (a) 180°C atm (b) 460°C atm Note: To find the value of the equilibrium constant at each temperature you must first find the value of G0 at each temperature by using the equation G0 = H0 - TS0 For this reaction the values are H0 = +88.3 kJ/mol and S0= 151.3 J/mol*K
Consider the reaction shown below. PbCO3(s) PbO(s) + CO2(g) Calculate the equilibrium pressure of CO2 in...
Consider the reaction shown below. PbCO3(s) PbO(s) + CO2(g) Calculate the equilibrium pressure of CO2 in the system at the following temperatures. (a) 180°C atm (b) 460°C atm Note: To find the value of the equilibrium constant at each temperature you must first find the value of G0 at each temperature by using the equation G0 = H0 - TS0 For this reaction the values are H0 = +88.3 kJ/mol and S0= 151.3 J/mol*K
Consider the reaction shown below. PbCO3(s) PbO(s) + CO2(g) Calculate the equilibrium pressure of CO2 in...
Consider the reaction shown below. PbCO3(s) PbO(s) + CO2(g) Calculate the equilibrium pressure of CO2 in the system at the following temperatures. (a) 100°C atm (b) 420°C atm Note: To find the value of the equilibrium constant at each temperature you must first find the value of G0 at each temperature by using the equation G0 = H0 - TS0 For this reaction the values are H0 = +88.3 kJ/mol and S0= 151.3 J/mol*K
Enzymes A(aq) ----->B(aq) <----- The ΔG°\' of the reaction is -7.510 kJ ·mol–1. Calculate the equilibrium...
Enzymes A(aq) ----->B(aq) <----- The ΔG°\' of the reaction is -7.510 kJ ·mol–1. Calculate the equilibrium constant for the reaction. (Assume a temperature of 25° C.) What is ΔG at body temperature (37.0° C) if the concentration of A is 1.8 M and the concentration of B is 0.75 M?
Consider the following gas-phase reaction: 2 CCl4(g) + H2(g) C2H2(g) + 4 Cl2(g) Using data from...
Consider the following gas-phase reaction: 2 CCl4(g) + H2(g) C2H2(g) + 4 Cl2(g) Using data from Appendix C of your textbook calculate the temperature, To, at which this reaction will be at equilibrium under standard conditions (Go = 0) and choose whether >Go will increase, decrease, or not change with increasing temperature from the pulldown menu. To = K, and Go will with increasing temperature. For each of the temperatures listed below calculate Go for the reaction above, and select...
4. Thermodynamic data for C(graphite) ​and C(​​diamond)​ at 298 K is given in the table below....
4. Thermodynamic data for C(graphite) ​and C(​​diamond)​ at 298 K is given in the table below. delta Hf​o ​(kJ/mol) o​ (J/mol K C​(graphite) 0.0 5.740 C​(diamond) 1.895 2.377 a) Calculate delta H​o​ and delta S​o and delta G​o ​for the transformation of 1 mole of graphite to diamond at 298 K. b) Is there a tempature at which this transformation will occur spontaneously at atmospheric pressure? Justify your answer. 8. Methanol can be made using the Fischer-Tropsch process according to...
13. Consider the reaction shown below. PbCO3(s) PbO(s) + CO2(g) Calculate the equilibrium pressure of CO2...
13. Consider the reaction shown below. PbCO3(s) PbO(s) + CO2(g) Calculate the equilibrium pressure of CO2 in the system at the following temperatures. (a) 160°C ____ atm (b) 490°C ____ atm Note: To find the value of the equilibrium constant at each temperature you must first find the value of G0 at each temperature by using the equation G0 = H0 - TS0 For this reaction the values are H0 = +88.3 kJ/mol and S0= 151.3 J/mol*K
Calculate delta G rxn at 25^oC for the reaction below 2A(ag) + B(ag)---C(ag) +D(g) if deltaG^o...
Calculate delta G rxn at 25^oC for the reaction below 2A(ag) + B(ag)---C(ag) +D(g) if deltaG^o rxn=9.9 x 10^3 j/mol and a, (A)=0.8 M, (B)=0.5M, (C)=0.05M, AND Pd =0.05atm, and (b) {A}= 0.1M,(B)=1M,(C)=0.5M, and Pd =0.5atm. Is the reaction spontaneous under either of these conditions?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT