Question

Determine the order of reaction 2 N2O5 --> (g)4 NO2 (g) + O2 (g) using the...

Determine the order of reaction

2 N2O5 --> (g)4 NO2 (g) + O2 (g)

using the following information:

t (min) 0 1 2 3... infinity
[O2] (mol/L) 0 0.148 0.252 0.326... 0.500

Homework Answers

Answer #1

It is of Zero Order reaction with respect change in the concentration of Oxygen, as the units provides (moles/lit) are for zero order reaction.

But overall order of reaction is First order with respect to formation of Nitrogen dioxide.

Decomposition of N2O5:

2N2O5(g) → 4NO2(g) + O2(g)

From the equation it is clear that 2 moles of Nitrogen pentoxide (N2O5) decomposes to produce 4 moles of Nitrogen dioxide (NO2) and 1 mole of Oxygen (O2).

From the given:

After 1 min of time the reaction produces 0.148 m of Oxygen, thus it also produces (4*0.148) m of NO2 from (2*0.148) m of N2O5.

Deterimination of rate constant (k):

Let the initial concentration of N2O5 (a) = 1

After t = 1 min the concentration of N2O5 will be (a-x) = [1 - (2*0.148)]

k = (2.303/t)*log a/(a-x)

= (2.303/1)*log(a/[1 - (2*0.148)])

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The gas phase reaction 2 N2O5(g) ? 4 NO2(g) + O2(g) has an activation energy of...
The gas phase reaction 2 N2O5(g) ? 4 NO2(g) + O2(g) has an activation energy of 103 kJ/mol, and the first order rate constant is 3.77×10-5 min-1 at 272 K. What is the rate constant at 292 K?
The decomposition of N2O5 is first order reaction. N2O5(g) decomposes to yield NO2 (g) and O2(g)....
The decomposition of N2O5 is first order reaction. N2O5(g) decomposes to yield NO2 (g) and O2(g). At 48 deg C the rate constant for the reaction is 1.2x10^-5 s^-1. Calculate the partial pressure of NO2(g) produced from 1.0L of 0.700M N2O5 solution at 48 degC over a period of 22 hours if the gas is collected in a 10.0L container
The rate constant for the first-order decomposition of N2O5 by the reaction 2 N2O5 (g) ...
The rate constant for the first-order decomposition of N2O5 by the reaction 2 N2O5 (g)  4 NO2(g) + O2(g) is k, = 3.38 x 10-5 s -1 at 25 C. What is the half-life of N2O5? What will be the partial pressure, initially 500 Torr, at ( a) 50 s; (b) 20 min, (c) 2 hr after initiation of the reaction?
The data below show the concentration of N2O5 versus time for the following reaction: N2O5(g)→NO3(g)+NO2(g) Time...
The data below show the concentration of N2O5 versus time for the following reaction: N2O5(g)→NO3(g)+NO2(g) Time (s) [N2O5] (mol L−1) 0 1.000 25 0.822 50 0.677 75 0.557 100 0.458 125 0.377 150 0.310 175 0.255 200 0.210 Determine the order of the reaction.
1) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)  2 NO2(g) + ½ O2(g)...
1) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)  2 NO2(g) + ½ O2(g) is first order in N2O5 with a rate constant of 4.70×10-3 s-1. If the initial concentration of N2O5 is 0.105 M, the concentration of N2O5 will be  Mafter 391 s have passed. 2) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)2 NO2(g) + ½ O2(g) is first order in N2O5 with a rate constant of 4.70×10-3 s-1. If the initial concentration of...
"For the reaction 2 N2O5 --> 4 NO2 + O2 the rate constant is 6.82 x...
"For the reaction 2 N2O5 --> 4 NO2 + O2 the rate constant is 6.82 x 10^-3 s^-1 at 70 degrees Celsius. The reaction is first order overall. If you start with 0.350 mol of dinitrogen pentoxide in a 2.0 L volume, how many miles will remain after 10 minutes? How long will it take for you to have 0.125 moles of reactant left? What is the half-life of dinitrogen pentoxide?" *Please show all work. * if it's out of...
Solve: 2 NO2 (g) + O3 (g) → N2O5 (g) + O2 (g)      ∆Hº = -198...
Solve: 2 NO2 (g) + O3 (g) → N2O5 (g) + O2 (g)      ∆Hº = -198 kJ mol-1RXN     ∆Sº = -168 J K-1        Ozone reacts with nitrogen dioxide according to the equation above. State and explain how the spontaneity of this reaction will vary with increasing temperature. Substance ∆Hºf (kJ mol -1) O3 (g) 143 N2O5 (g) 11
The following reaction is first order in N2O5 : N2O5 (g)→ NO3(g) + NO2(g) The rate...
The following reaction is first order in N2O5 : N2O5 (g)→ NO3(g) + NO2(g) The rate constant for the reaction at a certain temperature is 0.053/s Calculate the rate of reaction when [N2O5]=0.055M What would the rate of reaction be at the same concentration if the reaction was second order? Zero order? (Assume same numerical value for the rate constant but with correct units)
When N2O5(g) is heated, it dissociates into N2O3(g) and O2(g) according to the following reaction: N2O5(g)...
When N2O5(g) is heated, it dissociates into N2O3(g) and O2(g) according to the following reaction: N2O5(g) ⇌ N2O3(g)+O2(g) Kc=7.75 at a given temperature. The N2O3(g) dissociates to give N2O(g) and O2(g) according the following reaction: N2O3(g)⇌N2O(g)+O2(g) Kc=4.00 at the same temperature. When 4.00 mol of N2O5(g) is heated in a 1.00-L reaction vessel to this temperature, the concentration of O2(g) at equilibrium is 4.50 mol/L. Part A Find the concentration of N2O5 in the equilibrium system. Express your answer using...
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3...
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3 s-1. Suppose we start with 0.0550 mol of N2O5(g) in a volume of 3.5 L. 2 N2O5(g) → 4 NO2(g) + O2(g) (a) How many moles of N2O5 will remain after 3.0 min? mol (b) How many minutes will it take for the quantity of N2O5 to drop to 0.005 mol? min (c) What is the half-life of N2O5 at 70°C? min