Question

A 20.0-g sample of ice at 210.08C is mixed with 100.0 g water at 80.08C. Calculate...

A 20.0-g sample of ice at 210.08C is mixed with 100.0 g water at 80.08C. Calculate the final temperature of the mixture assuming no heat loss to the surroundings. The heat capacities of H 2 O(s) and H 2 O(l) are 2.03 and 4.18 J/g ? 8C, respectively, and the enthalpy of fusion for ice is 6.02 kJ/mol.

Homework Answers

Answer #1

Mass of ice m1 = 20 g

Temperature T1 = - 10 C

Melting point of Ice Tm = 0 C

Mass of water m2 = 100 g

Temperature T2 = 80 C

Heat capacity of ice Cps = 2.03 J/gC

Heat capacity of water Cpw = 4.18 J/gC

H fusion =( 6.02 kJ/mol )x (1mol/18g) = 334 J/g

Heat given by water = heat absorbed by ice

Heat given by water = heat absorbed by ice to bring the temperature to 0 C + heat absorbed to change the ice phase to liquid + heat absorbed to change the temperature from 0 C to T c

m2 Cpw ( T2 - T) = m1 x Cps ( Tm - T1) + m1 x H fusion + m1 x Cpw x ( T - Tm)

100 x 4.18 x (80- T) = 20 x 2.03 x ( 0 + 10) + 20 x 334 + 20 x 4.18 x (T - 0)

418 (80 - T) = 7086 + 83.6 T

33440 - 418 T = 7086 + 83.6 T

26354 = 501.6 T

T = 52.54 C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two 20.0-g ice cubes at –20.0 °C are placed into 285 g of water at 25.0...
Two 20.0-g ice cubes at –20.0 °C are placed into 285 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, Tf, of the water after all the ice melts. heat capacity of H2O(s) is 37.7 J/mol*K heat capacity of H2O(l) is 75.3 J/mol*K enthalpy of fusion of H20 is 6.01 kJ/mol
An ice cube tray contains enough water at 28.0°C to make 18 ice cubes that each...
An ice cube tray contains enough water at 28.0°C to make 18 ice cubes that each has a mass of 30.0 g. The tray is placed in a freezer that uses CF2Cl2 as a refrigerant. The heat of vaporiztion of CF2Cl2 is 158 J/g. What mass of CF2Cl2 must be vaporized in the refrigeration cycle to convert all the water at 28.0°C to ice at –5.0°C? The heat capacities forH2O(s) and H2O(l) are 2.03 J/g·°C and 4.18 J/g·°C, respectively, and...
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0...
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts. heat capacity of H2O(s) 37.7 J/(mol*k) heat capacity of H2O(l) 75.3 J/(mol*k) enthalpy of fusion of H2O 6.01 kJ/mol
Two 20.0-g ice cubes at –18.0 °C are placed into 245 g of water at 25.0...
Two 20.0-g ice cubes at –18.0 °C are placed into 245 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts. Please show work. Heat capacity of H20(s): 37.7 J/(mol x K) Heat capacity of H20(l): 75.3 J/(mol x K) Enthalpy of fusion of H20: 6.01 kJ/mol
A 500.0-g sample of an element at 153°C is dropped into an ice-water mixture; 109.5-g of...
A 500.0-g sample of an element at 153°C is dropped into an ice-water mixture; 109.5-g of ice melts and an ice-water mixture remains. Calculate the specific heat of the element from the following data: Specific heat capacity of ice: 2.03 J/g-°C Specific heat capacity of water: 4.18 J/g-°C H2O (s) → H2O (l), ΔHfusion: 6.02 kJ/mol (at 0°C) a) If the molar heat capacity of the metal is 26.31 J/mol-°C, what is the molar mass of the metal, and what...
PLEASE SHOW ALL WORK! 1) 65 g of ice at -17°C is mixed with 256 g...
PLEASE SHOW ALL WORK! 1) 65 g of ice at -17°C is mixed with 256 g of water at 29.2°C. Calculate the final temperature of the mixture. Assume that no energy in the form of heat is transferred to the environment. (Heat of fusion = 333 J/g; specific heat capacities: ice = 2.06 J/g x K, liquid water = 4.184 J/g x K) 2) In the reaction of barium chloride with potassium phosphate, barium phosphate and potassium chloride are produced....
How much heat is released when 105 g of steam at 100.0°C is cooled to ice...
How much heat is released when 105 g of steam at 100.0°C is cooled to ice at -15.0°C? The enthalpy of vaporization of water is 40.67 kJ/mol, the enthalpy of fusion for water is 6.01 kJ/mol, the molar heat capacity of liquid water is 75.4 J/(mol • °C), and the molar heat capacity of ice is 36.4 J/(mol • °C).
A) Four ice cubes at exactly 0 ∘C with a total mass of 53.5 g are...
A) Four ice cubes at exactly 0 ∘C with a total mass of 53.5 g are combined with 140 g of water at 85 ∘Cin an insulated container. (ΔH∘fus=6.02 kJ/mol, cwater=4.18J/g⋅∘C) If no heat is lost to the surroundings, what is the final temperature of the mixture? B) A sample of steam with a mass of 0.510 g and at a temperature of 100 ∘C condenses into an insulated container holding 4.50 g of water at 2.0 ∘C.( ΔH∘vap=40.7 kJ/mol,...
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0...
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, Tf, of the water after all the ice melts. Heat capactiy of H2o (s) = 37.7 J/(mol x K) Heat capactiy of H2o (l) = 75.3 enthapy infusion of H20= 6.01 kj/mol
A 275 g sample of nickel at 100.0ºC is placed in 100.0 mL of water at...
A 275 g sample of nickel at 100.0ºC is placed in 100.0 mL of water at 22.0ºC. What is the final temperature of the mixture, assuming no heat is lost to the surroundings? The specific heat capacity of Ni is 0.444 J/(g.ºC). The density of water is 1.00 g/mL and the specific heat capacity of water is 4.18 J/(g.ºC.