Question

An aqueous solution containing 36.5 g  of an unknown molecular (non-electrolyte) compound in 151.5 g of water...

An aqueous solution containing 36.5 g  of an unknown molecular (non-electrolyte) compound in 151.5 g of water was found to have a freezing point of -1.5 ∘C.

Homework Answers

Answer #1

The formula for the freezing point is given by,

T=Kf x m

where T is the freezing temp i.e -1.5-degree Celsius

Kf for water is 1.86-degree Celsius / Molal

m is the molality

so, putting the values

1.5 = m x kf

=m x 1.86

m=1.5/1.86

m = 0.806

molality=moles of solute/kg of solvent------(1)

solvent here is water so, 151.5g = 0.1515Kg

putting values in (1)

0.806=molesof solute/0.1515Kg

moles of solute=0.1221 moles

no.of moles = given mass/molar mass

molar mass=given mass/no.of moles

Molar mass = 36.5 / 0.1221 = 298.9g/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An aqueous solution containing 36.2 g of an unknown molecular (non-electrolyte) compound in 146.1 g of...
An aqueous solution containing 36.2 g of an unknown molecular (non-electrolyte) compound in 146.1 g of water was found to have a freezing point of -1.2 ∘C. Calculate the molar mass of the unknown compound.
An aqueous solution containing 36.3 g of an unknown molecular (non-electrolyte) compound in 144.2 g of...
An aqueous solution containing 36.3 g of an unknown molecular (non-electrolyte) compound in 144.2 g of water was found to have a freezing point of -1.2 ∘C.Calculate the molar mass of the unknown compound.
An aqueous solution containing 35.0 g of an unknown molecular (non-electrolyte) compound in 156.9 g of...
An aqueous solution containing 35.0 g of an unknown molecular (non-electrolyte) compound in 156.9 g of water was found to have a freezing point of -1.2 ∘C. Calculate the molar mass of the unknown compound. Calculate the molar mass of the unknown compound.
An aqueous solution containing 36.2 g of an unknown molecular (non-electrolyte) compound in 152.4 g of...
An aqueous solution containing 36.2 g of an unknown molecular (non-electrolyte) compound in 152.4 g of water was found to have a freezing point of -1.4 ∘C. Calculate the molar mass of the unknown compound. Express your answer using two significant figures.
An aqueous solution containing 17.5 g of an unknown molecule (non electrolyte) compound in 100 g...
An aqueous solution containing 17.5 g of an unknown molecule (non electrolyte) compound in 100 g water has a freezing point of -1.8 degrees Celsius. Calculate the molar mass of the unknown compound
An aqueous solution containing 34.9 g of an unknown molecular (nonelectrolyte) compound in 130.0 g of...
An aqueous solution containing 34.9 g of an unknown molecular (nonelectrolyte) compound in 130.0 g of water has a freezing point of -1.4 ∘C. Calculate the molar mass of the unknown compound.
Analysis of a non-electrolyte, unknown compound, X, reveals that it contains 32.3 percent by mass C,...
Analysis of a non-electrolyte, unknown compound, X, reveals that it contains 32.3 percent by mass C, 3.97 percent by mass H, and the balance is O. An aqueous solution of the unknown compound is prepared by dissolving 1.142 g of X in 11.230 g water and has a freezing point of -1.26oC. What is the molecular formula of the X?
A solution was prepared by dissolving 1.000 g of an unknown non-electrolyte in 50.00 g of...
A solution was prepared by dissolving 1.000 g of an unknown non-electrolyte in 50.00 g of CCl4. The freezing point of the solution was found to be -28.4°C. What is the molar mass of this unknown solute? (The freezing point of pure CCl4 is -22.3°C, and Kf for CCl4 is 29.8°C.kg/mol.)
A solution is prepared by mixing 12.0g of unknown electrolyte with 80.0g of water. The solutions...
A solution is prepared by mixing 12.0g of unknown electrolyte with 80.0g of water. The solutions freezes at -1.94C. The freezing point of pure water is 0.0C. the value of Kf for water is 1.86C/m. a) what is the molality of the solution? b)what are the moles of unknown electrolyte in the solution? c)what is the molecular weight of the unknown?
A solution contains 11.45 g of unknown compound dissolved in 50.0 mL of water. (Assume a...
A solution contains 11.45 g of unknown compound dissolved in 50.0 mL of water. (Assume a density of 1.00 g/mL for water.) The freezing point of the solution is -4.73 ∘C. The mass percent composition of the compound is 53.31% C, 11.19% H, and the rest is O. What is the molecular formula of the compound? Express your answer as a molecular formula.