Question

If 0.540 moles of a gas are compressed from 2.10 L to 0.875 L at 273...

If 0.540 moles of a gas are compressed from 2.10 L to 0.875 L at 273 K, what is the change in work at a) a constant pressure of 1.00 atm, and b) variable pressure?

Homework Answers

Answer #1

a) a constant pressure :

work = - p (V2 - V1)

           = - 1.00 x (0.875 - 2.10)

           = 1.225 L-atm

           = 124 J

work = 124 J

b) variable pressure :

work = - n R T ln (V2 / V1)

          = -0.540 x 8.314 x 273 x ln (0.875 / 2.10)

          = 1073 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A gas is compressed at a constant pressure of 0.800 atm from 10.00 L to 3.00...
A gas is compressed at a constant pressure of 0.800 atm from 10.00 L to 3.00 L. In the process, 400 J of energy leaves the gas by heat. (a) What is the work done on the gas? J (b) What is the change in its internal energy? J
A gas is compressed from an initial volume of 5.40 L to a final volume of...
A gas is compressed from an initial volume of 5.40 L to a final volume of 1.22 L by an external pressure of 1.00 atm. During the compression the gas releases 120 J of heat. What is the change in internal energy of the gas?
A gas is compressed from an initial volume of 5.1 L to a final volume of...
A gas is compressed from an initial volume of 5.1 L to a final volume of 3.4 L under a constant pressure of 1.20 atm. During the compression, the gas releases 86 J of heat. Calculate the change in internal energy and in enthalpy.
5 moles of a monatomic ideal gas initially at 1 atm and 200 K is compressed...
5 moles of a monatomic ideal gas initially at 1 atm and 200 K is compressed isothermally against a constant external pressure of 2.0 atm, to a final pressure of 2.0 atm. Calculate W; Q; U; and H in Joules.
The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L. The...
The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L. The initial pressure and temperature are 1.00 atm and 300 K. The final pressure is 4.00 atm. ? = 8.314 J/mol.K , ????????? = 1.4, ??????????? = 1.67 and 1 atm = 1.013 × 10^5 Pa. mol.K (a) Is the gas monatomic or diatomic? (b) What is the final temperature? (c) How many moles are in the gas?
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm...
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm and a temperature of 20.0OC. The gas is compressed adiabatically to a final pressure of 5.00 atm. Find: (a) the initial volume of the gas; (b) the final volume of the gas; (c) the final temperature of the gas; (d) the work done by the gas during the compression. Answers: (a) 72.1 L; (b) 27.5 L; (c) 285 OC; (d) -97.8 atm-L Please show...
Two moles of helium gas initially at 195 K and 0.32 atm are compressed isothermally to...
Two moles of helium gas initially at 195 K and 0.32 atm are compressed isothermally to 1.83 atm. a) Find the final volume of the gas. Assume that helium behaves as an ideal gas. The universal gas constant is 8.31451 J/K
Three moles of an ideal gas are inside a 5.0 L chamber. 50.6 kJ of heat...
Three moles of an ideal gas are inside a 5.0 L chamber. 50.6 kJ of heat are added to the gas and, in the process, the pressure increases from 2.0 atm to 10.0 atm. (A) Find the initial and final temperatures of the gas (in both °C and K) (B) Find the change in internal energy of the gas
A gas is compressed from an initial volume of 5.55 L to a final volume of...
A gas is compressed from an initial volume of 5.55 L to a final volume of 1.22 L             by an external pressure of 0.975 atm. Which of the following statements is/are true? (1 L·atm = 101.3 J). Choose the single best answer A.   Work = 428 J B.   The gas does work on the surroundings. C.   Work = 4.22 J D. The gas loses energy during the compression. E.   Two of the above are true.
Consider 4.30 L of a gas at 365 mmHg and 20. ∘C . If the container...
Consider 4.30 L of a gas at 365 mmHg and 20. ∘C . If the container is compressed to 2.90 L and the temperature is increased to 32 ∘C , what is the new pressure, P2, inside the container? Assume no change in the amount of gas inside the cylinder. What pressure would it take to compress 250. L of helium gas initially at 1.00 atm into a 2.00 L tank at constant temperature? A balloon filled with 2.00 L...