Question

If 2.71 moles of nitrogen reacts with 4.26 moles of hydrogen, what is the maximum volume...

If 2.71 moles of nitrogen reacts with 4.26 moles of hydrogen, what is the maximum volume of ammonia (in L) that can be produced at a pressure of 1.18 atm and 306 K. N2(g) + 3 H2(g) → 2 NH3(g)

Homework Answers

Answer #1

Reaction take place as follow

3H2 + N2  2NH3

According to reaction 3 mole of H2 react with 1 mole of nitrogen therefore to react with 2.71 mole of N2 required mole of H2 = 2.71 X 3 = 8.13 mole of H2 But H2 given only 4.26 therefore H2 is limitig reactant
According to reaction 3 mole of H2 produce 2 mole of NH3 then 4.26 H2 produce NH3 = 4.26 X 2 / 3 = 2.84 mole

2.84 mole of NH3 produce

use ideal gas equation to calculate volume of NH3 gas

We know that PV = nRT

V = nRT/P

n = 2.84 mole,

T = 306 K,

P= 1.18 atm,

R = 0.08205 L atm mol-1 K-1 ( R = gas constant)

V = ?

Substitute these value in above equation.

V = 2.84 X0.08205 X306 / 1.18 = 71.31 L

71.31 liter of NH3 gas produced

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the...
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the equation... 3H2+N2 --->2NH3 1.how many grams of NH3 can be produced from 3.42 mol of N2 and excess H2 2. how many grams of H2 are needed to produce 14.93 g of NH3 ? 3. How many molecules (not moles) of NH3 are produced from 6.04*10^-4 g of H2 ?
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation 3H2(g)+N2(g)→2NH3(g) 1. How many molecules (not moles) of NH3 are produced from 5.25×10−4 g of H2 ?
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an...
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an iron catalyst at high temperature and pressure. N2(g) + 3 H2(g) --> 2 NH3(g) How many grams of ammonia can be prepared by reaction of 9.405 g of nitrogen with 2.413 g of hydrogen?
Nitrogen and hydrogen combine at a high temperature, in the presence of a catalyst, to produce...
Nitrogen and hydrogen combine at a high temperature, in the presence of a catalyst, to produce ammonia. N2(g)+3H2(g)⟶2NH3(g) Assume 0.230 mol N2 and 0.758 mol H2 are present initially.PLEASE SHOW steps!! 1)After complete reaction, how many moles of ammonia NH3 are produced? 2)How many moles of H2 remain? 3)How many moles of N2 remain? 4)What is the limiting reactant? nitrogen or hydrogen
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia....
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia. N2 (g) +3 H2 (g) -------------------> 2 NH3 (g) Assume 0.240 mol of N2 and 0.772 mol of H2 are present initially. 1) After complete reaction, how many moles of ammonia are produced? 2) How many moles of H2 remain? 3) How many moles of N2 remain? 4) What is the limiting reactant?
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation: 3 H2 (g) + N2 (g) → 2 NH3 (g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. What is the maximum theoretical yield in grams if...
Ammonia, NH3, is produced from the reaction of gaseous nitrogen and hydrogen at high temperatures. 3...
Ammonia, NH3, is produced from the reaction of gaseous nitrogen and hydrogen at high temperatures. 3 H2 (g) + N2 (g)  → 2 NH3 (g) For the reaction of 3.77 g of H2 with 8.66 g of N2, you determined that 21.2 g and 10.5 g of ammonia could be produced, respectively. In the laboratory, you reacted these masses of H2 and N2 and collected 7.70 g of NH3. What is the percentage yield of this reaction to the correct number...
A sample of 0.60 moles of N2 reacts with 0.35 moles of H2 to form ammonia...
A sample of 0.60 moles of N2 reacts with 0.35 moles of H2 to form ammonia (NH3). If ammonia is the only product, what mass of ammonia is formed? Molar masses: H2=2.016 g/mol, N2=28.02 g/mol, NH3=17.03 g/mol.
Consider the following balanced reaction between hydrogen and nitrogen to form ammonia: 3H2(g) + N2(g)→2NH3(g) How...
Consider the following balanced reaction between hydrogen and nitrogen to form ammonia: 3H2(g) + N2(g)→2NH3(g) How many moles of NH3 can be produced from 24.0 mol of H2 and excess N2? Express the number of moles to three significant figures.
Ammonia was formed at 450 ◦C by passing a mixture of nitrogen gas and hydrogen gas...
Ammonia was formed at 450 ◦C by passing a mixture of nitrogen gas and hydrogen gas at a 1 : 3 mole ratio over a catalyst. When the total pressure was held constant at 10.13 bar it was found that the product gas contained 2.04% by volume of ammonia. For the reaction (1/2)N2(g) +(3/2)H2(g) <----> NH3(g) calculate the value of the equilibrium constant K at 450 ◦C.