Fermi-Dirac Distribution.
(a) Calculate the magnitude of the Fermi momentum and the Fermi wavelength for 4.2 x1021 electrons confined in a box of volume 1 cm3.
(b) Compute the Fermi energy (in eV) for this system.
(c) If the electrons are replaced by neutrons (also spin-1/2), compute the Fermi momentum, the Fermi wavelength, and the Fermi energy.
(a)
Fermi momentum can be found if one knows the electron density:
4.2 x1021 electrons confined in a box of volume 1 cm3.
(n) = 4.2 x1021 /cm3 = 4.2 x1027 /m3
( 1J = 1 kg·m2·s-2 )
The fermi momentum P(f ) = h/2 * (3/ * n)^1/3 = 6.626*10^-34 J-s / 2 * (3/ * 4.2 x1027 /cm3)^1/3
The fermi momentum P(f ) = 5.26x10-25 kg-m/s
fermi wavelength ( λ(f) ) = h/P(f) = 6.626*10^-34 J-s /5.26x10-25 kg-m/s = 1.26*10-9 m =1.26 nm
(b) Compute the Fermi energy
E (f) = 1/2* mv(f)^2 = m2v(f)^2/ 2m = P(f )/ 2m (P(f) = m*v(f))
m(e) =9.1*10-31 kg
(5.26x10-25 kg-m/s)2 / 2*9.1*10-31 kg = 1.52*10^-19 J
1 eV = 1.6*10^-19 J
E(f) = 1.52*10^-19 J /1.6*10^-19 J/eV = 0.95 eV
(c) For neutron :
Get Answers For Free
Most questions answered within 1 hours.