Question

Hydrogen gas reacts with iodine gas to form hydroiodic acid based on the following reaction: H2...

Hydrogen gas reacts with iodine gas to form hydroiodic acid based on the following reaction: H2 + I2 = 2HI Suppose you put 0.250 mol of H2 and 0.750 mol I2 into a 1.00 L flask. At equilibrium, the concentration of HI gas is 0.482 M. What is the equilibrium constant for this reaction? The error tolerance for the answer is ±5% of the correct value.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌...
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌ 2HI(g) is 54.3 at 430°C. Calculate the equilibrium concentrations of H2, I2, and HI at 430°C if the initial concentrations are [H2] = [I2] = 0 M, and [HI] = 0.483 M.
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌...
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌ 2HI(g) is 54.3 at 430 ° C. Calculate the equilibrium concentrations of H2, I2, and HI at 430 ° C if the initial concentrations are [H2] = [I2] = 0 M, and [HI] = 0.445 M.
H2 + I2 <---> 2HI Kp=100 Initially, a flask contains hydrogen gas at 0.010atm iodine gas...
H2 + I2 <---> 2HI Kp=100 Initially, a flask contains hydrogen gas at 0.010atm iodine gas at 0.0050atm, and hydorgen iodide gas at 0.50atm. Determine equilibrium partial pressure of each gas in the flask.
An equilibrium mixture contains 0.710 mol HI, 0.460 mol I2, and 0.250 mol H2 in a...
An equilibrium mixture contains 0.710 mol HI, 0.460 mol I2, and 0.250 mol H2 in a 1.00-L flask. What is the equilibrium constant for the following reaction? 2HI(g) H2(g) + I2(g) K = How many moles of I2 must be removed in order to double the number of moles of H2 at equilibrium? _______ mol I2
Be sure to answer all parts. Kc for the reaction of hydrogen and iodine to produce...
Be sure to answer all parts. Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌ 2HI(g) is 54.3 at 430°C. Calculate the equilibrium concentrations of H2, I2, and HI at 430°C if the initial concentrations are [H2] = [I2] = 0 M, and [HI] = 0.567 M. [H2] = M [I2] = M [HI] = M
Hydrogen iodide decomposes according to the following reaction. 2 HI(g) equilibrium reaction arrow H2(g) + I2(g)...
Hydrogen iodide decomposes according to the following reaction. 2 HI(g) equilibrium reaction arrow H2(g) + I2(g) A sealed 1.5 L container initially holds 0.00615 mol H2, 0.00445 mol I2, and 0.0163 mol HI at 703 K. When equilibrium is reached, the equilibrium concentration of H2(g) is 0.00364 M. What are the equilibrium concentrations of HI(g) and I2(g)?
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g) <----> 2HI(g) Kc=53.3 At this temperature, 0.400 mol of H2 and 0.400 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) --> H2(g)...
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) --> H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.322 M HI,   4.33×10-2 M H2 and 4.33×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.213 mol of HI(g) is added to the flask? [HI] = M [H2] = M [I2] = M
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.325 M HI, 4.36×10-2 M H2 and 4.36×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 2.27×10-2 mol of I2(g) is added to the flask? [HI] = _____M [H2] = ____M [I2] = _____M
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g)...
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g) At this temperature, 0.300 mol of H2 and 0.300 mol of I2 were placed in a 1.00 L container to react. What concentration of HI is present at equilibrium? View comments (1)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT