Question

A. How many kilocalories are released when 215 g Cl2 reacts with silicon? B. Assuming that...

A. How many kilocalories are released when 215 g Cl2 reacts with silicon?

B. Assuming that Coca-Cola has the same specific heat as water [4.18 J/(g⋅∘C)], calculate the amount of heat in kilojoules transferred when one can (about 350 g) is cooled from 30 ∘C to 8 ∘C.

C. When 25.0 mL of 1.0 M H2SO4 is added to 50.0 mL of 1.0 M NaOH at 25.0 ∘C in a calorimeter, the temperature of the aqueous solution increases to 33.9 ∘C.

Assuming that the specific heat of the solution is 4.18 J/(g⋅∘C), that its density is 1.00 g/mL, and that the calorimeter itself absorbs a negligible amount of heat, calculate ΔH in kilojoules for the reaction.

H2SO4(aq)+2NaOH→2H2O(l)+Na2SO4(aq)

Homework Answers

Answer #1

A) The reaction is--- Si (s) + 2Cl2 (g) →----> SiCl4 (s) , H = -157 kcal

Molar mass of Cl2 = 71 g/mol

215 g Cl2 x 1mol Cl2/71 g Cl2 = 3.03 mol Cl2

3.03 mol Cl2 x (-157 kcal/2mol Cl2 ) = -237.85 kcal

237.85 kilocalories are released.

B) q = m x c x T

=> q = 350 g x 4.18 J/g0C x (8-30)0C

=> q = (350 x 4.18 x -22) J

=> q =- 32186 J =-32.186 KJ

C) The given reaction is, H2SO4(aq) + 2NaOH-----> 2H2O(l) + Na2SO4(aq)

mass = density x volume = 1.00g /mL x (25 +50) mL = 1.00 g/mL x 75 mL = 75 g

T = (33.9 -25.0)0C = 8.90C

Now,

q = mcT

=> q = 75 g x 4.18 J/g0C x 8.90C

=> q =2790.15 J

Again,

(0.0250 L) x (1.0 mol/L H2SO4) = 0.025 mol H2SO4

Now,

H =-q/0.025 mol = -(2790.15 J) / (0.025 mol H2SO4) = -111606 J/mol = -111.6 kJ/mol H2SO4

Therefore,
H2SO4(aq) + 2 NaOH(aq) -----> 2 H2O(l) + Na2SO4, H = -111.6 kJ


Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
100.0 mL of 0.800 M aqueous NaOH and 50.00 mL of 0.800 M aqueous H2SO4, each...
100.0 mL of 0.800 M aqueous NaOH and 50.00 mL of 0.800 M aqueous H2SO4, each at 24.0°C, were mixed, see equation: 2NaOH(aq) + H2SO4(aq) → Na2SO4(aq) + 2H2O(l) The final temperature achieved by the solution was 29.3 °C. Neglect the heat capacity of the cup and the thermometer, and assume that the solution of products has a density of exactly 1.00 g/mL and a specific heat capacity of 4.18 J/(g•K).     How much heat was absorbed by the water?
5. When 1.00L of a 1.00 M Ba(NO3)2 solution at 25.0oC is mixed with 1.00 L...
5. When 1.00L of a 1.00 M Ba(NO3)2 solution at 25.0oC is mixed with 1.00 L of a 1.00 M Na2SO4 solution at 25.0oC in a calorimeter, the white solid, BaSO4 forms and the temperature of the mixture increases to 28.1oC. Assuming that the calorimeter absorbs only a negligible quantity of heat, that the specific heat capacity of the solution is 4.18 J/oC g and that the density of the final solution is 1.0 g/mL, calculate the enthalpy change per...
A calorimeter contains 35.0 mL of water at 15.0 ∘C . When 1.70 g of X...
A calorimeter contains 35.0 mL of water at 15.0 ∘C . When 1.70 g of X (a substance with a molar mass of 76.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 25.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
Zinc metal reacts with hydrochloric acid according to the following balanced equation. Zn(s)+2HCl(aq)→ZnCl2(aq)+H2(g) When 0.107 g...
Zinc metal reacts with hydrochloric acid according to the following balanced equation. Zn(s)+2HCl(aq)→ZnCl2(aq)+H2(g) When 0.107 g of Zn(s) is combined with enough HCl to make 51.6 mL of solution in a coffee-cup calorimeter, all of the zinc reacts, raising the temperature of the solution from 22.2 ∘C to 24.3 ∘C. Find ΔHrxn for this reaction as written. (Use 1.0 g/mL for the density of the solution and 4.18 J/g⋅∘C as the specific heat
Zinc metal reacts with hydrochloric acid according to the following balanced equation. Zn(s)+2HCl(aq)→ZnCl2(aq)+H2(g) When 0.119 g...
Zinc metal reacts with hydrochloric acid according to the following balanced equation. Zn(s)+2HCl(aq)→ZnCl2(aq)+H2(g) When 0.119 g of Zn(s) is combined with enough HCl to make 53.4 mL of solution in a coffee-cup calorimeter, all of the zinc reacts, raising the temperature of the solution from 21.7 ∘C to 24.5 ∘C. Part A Find ΔHrxn for this reaction as written. (Use 1.0 g/mL for the density of the solution and 4.18 J/g⋅∘C as the specific heat capacity.)
Zinc metal reacts with hydrochloric acid according to the following balanced equation. Zn(s)+2HCl(aq)→ZnCl2(aq)+H2(g) When 0.106 g...
Zinc metal reacts with hydrochloric acid according to the following balanced equation. Zn(s)+2HCl(aq)→ZnCl2(aq)+H2(g) When 0.106 g of Zn(s) is combined with enough HCl to make 50.6 mL of solution in a coffee-cup calorimeter, all of the zinc reacts, raising the temperature of the solution from 21.5 ∘C to 24.4 ∘C. Find ΔHrxn for this reaction as written. (Use 1.0 g/mL for the density of the solution and 4.18 J/g⋅∘C as the specific heat capacity.)
Zinc metal reacts with hydrochloric acid according to the following balanced equation. Zn(s)+2HCl(aq)→ZnCl2(aq)+H2(g) When 0.106 g...
Zinc metal reacts with hydrochloric acid according to the following balanced equation. Zn(s)+2HCl(aq)→ZnCl2(aq)+H2(g) When 0.106 g of Zn(s) is combined with enough HCl to make 54.5 mL of solution in a coffee-cup calorimeter, all of the zinc reacts, raising the temperature of the solution from 21.6 ∘C to 24.5 ∘C. Find ΔHrxn for this reaction as written. (Use 1.0 g/mL for the density of the solution and 4.18 J/g⋅∘C as the specific heat capacity.) In kJ/mol.
A calorimeter contains 30.0 mL of water at 11.5 ∘C . When 2.10 g of X...
A calorimeter contains 30.0 mL of water at 11.5 ∘C . When 2.10 g of X (a substance with a molar mass of 42.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 17.0 mL of water at 11.5 ∘C . When 1.60 g of X...
A calorimeter contains 17.0 mL of water at 11.5 ∘C . When 1.60 g of X (a substance with a molar mass of 79.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 35.0 mL of water at 11.5 ∘C . When 1.30 g of X...
A calorimeter contains 35.0 mL of water at 11.5 ∘C . When 1.30 g of X (a substance with a molar mass of 66.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 29.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...